
CPEN 442 – Introduction to Cybersecurity

Module 2

Cryptography

This material in these slides is largely taken from the “CS458: Computer Security and Privacy” course at the University of Waterloo, and it has been originally designed by Profs. Ian Goldberg and 

Urs Hengartner, with contributions of other instructors.
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Cryptology

• Cryptology is a science that studies:
• Cryptography (“secret writing”): making secret messages

• Turning a plaintext (an ordinary readable message) into a ciphertext (a secret message that is 
“hard” to read)

• Cryptanalysis: breaking secret messages

• Recovering the plaintext from the ciphertext

• The point of cryptography is to send secure messages over an insecure medium 
(like the Internet).

• Cryptanalysis studies cryptographic systems to look for weaknesses or leaks of 
information.

• The goal of these lectures is to show you what cryptographic tools exist, and 
information about using these tools in a secure manner.
• We won’t be seeing the details of how the tools work.
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The building blocks of cryptography

• These are the main properties that we want to achieve with 
cryptography:
• Confidentiality: prevent Eve from reading Alice’s messages.

• Integrity: prevent Mallory from modifying Alice’s messages without being 
detected.

• Authenticity: preventing Mallory from impersonating Alice.

• To get availability, we need other techniques (redundancy, etc.).

5



Kerckhoff’s principle

• Kerckhoff ’s principle: a cryptosystem should be secure even if everything 
about the system, except the key, is public knowledge.

• Shannon’s maxim: one ought to design systems under the assumption that the 
enemy will immediately gain full familiarity with them.

• Do not use “secret” encryption methods (security by obscurity).

• Have public algorithms that use a secret key instead.

• If the adversary learns the secret: it’s easy to change a key (small-ish number), it’s 
not feasible to design a brand-new system.
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Encrypt

What the adversary 

(typically) knows

Decrypt



Kerckhoff’s principle

Kerckhoff’s principle has a number of implications:

• The system is at most as secure as the total number of possible keys.

• Eve can try every possible key, until she finds the right one.

• Many times, there are shortcuts to finding the key
• We will see some examples later, in the newspaper cryptogram
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Encrypt Decrypt
Does it 

make sense?



Cryptography Attack Models

When talking about cryptography, we usually assume that Eve knows the 
cryptography algorithm (Kerckhoff’s principle). What else does she know?
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• Ciphertext-only attack: Eve has at least one 

encrypted message, and tries to break it 

(guess the key and/or plaintext).

• Brute forcing (trying every key) is one 

way of carrying a ciphertext-only attack.

• Know plaintext attack: Eve knows one (or 

many) plaintext and ciphertext pairs. She 

tries to guess the key.



Cryptography Attack Models

When talking about cryptography, we usually assume that Eve knows the 
cryptography algorithm (Kerckhoff’s principle). What else does she know?
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• Chosen plaintext attack: Eve can choose any 

arbitrary plaintext and get the ciphertext (possibly 

many times). She wants to guess the key.

• Can be adaptive: Eve choose plaintexts after 

seeing the previous encryptions

• Chosen ciphertext attack: Even can choose any 

arbitrary ciphertext and get the plaintext (possibly 

many times). She wants to guess the key.

• Can also be adaptive.

Note: in cryptographic proofs, it is usually assumed that an adversary that can do CCA can also do CPA



Brute-force Attacks

• Ideally, we want a cryptosystem (i.e., a key generation algorithm, plus encrypt and 
decrypt functions) to defend in all these four attack models.

• However: there is always an attack that works: brute-forcing.

• This is why cryptosystems only provide computational security (i.e., security 
against a computationally-bounded adversary).
• There is one exception: the one-time pad
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Decrypt

Crypto brute-forcing: 

try all keys (usually)



Confusion and diffusion
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Encrypt

Two important properties of secure 
cryptosystems:

• Confusion: the relationship between the 
secret key and ciphertext should be as 
obscure as possible

• Diffusion: the relationship between the 
plaintext and ciphertext should be as 
obscure as possible
• Ideally, changing one single bit of the plaintext 

should “re-randomize” the ciphertext (i.e., on 
average, change half of the bits in the ciphertext)

Diffusion



Symmetric Crypto

• We use the same secret key to 
encrypt and to decrypt

• Also called secret-key crypto
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Asymmetric Crypto

• We use one key to encrypt 
(usually, the public key), and 
another one to decrypt (the 
private key).

• Usually called public-key crypto

Encrypt Decrypt

Encrypt Decrypt
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Ancient Cryptography

We are going to see some classic examples of cryptosystems:

• Caesar cipher

• Vigenère cipher

• Substitution ciphers

• Playfair cipher

• Enigma machine

• Vernam cipher

• One-time pad
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The Caesar Cipher

• The first well-known cipher, used by Julius Caesar (100 BC) to protect military 
messages.

• Very simple: it is a substitution cipher that replaces each letter with the one that is a 
fixed number of positions down the alphabet (e.g., Julius Caesar used a shift of 3):
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source: Wikipedia

Plaintext:  ATTACKTONIGHT
Key: -3
Ciphertext: XQQXZHQLKFDEQ

The Caesar cipher was broken 800 years later: frequency analysis!

• English text has a particular frequency for each letter, a 

“fingerprint”.

• The Caesar cipher just does a circular shift of this fingerprint, 

so it’s very easy to undo it.

Why did people think this 

was secure?

Security by obscurity



Vigenère cipher

• For a long time, attributed to Blaise de Vigenère, who published it in 1586.
• Actually, invented by Giovani Battista Bellaso in 1553.

• The Vigenère cipher uses a different circular shift for each letter, determined by 
the secret key.

• Example:

1. Repeat the key to match plaintext size

2. Convert letters to numbers, do modular addition, and convert back to letters:   
• A (0) + M (12) = M (12)

• T (19) + Y (24) = 43→ R (17)

• …
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Plaintext:  ATTACKTONIGHT
Key:        MYKEYMYKEYMYK
Ciphertext: MRDEAWRYRGSFD

How is the confusion and 

diffusion of this cipher?

How 

would you 

break it?



Substitution ciphers

• The Caesar and Vigenère ciphers are examples of substitution ciphers.

• A substitution cipher replaces a unit of the plaintext (usually one letter) for a unit 
of the ciphertext, with the help of a key.
• We could have a substitution using pairs of letters, triplets, etc.

• The Caesar cipher uses a single substitution for the entire plaintext: 
monoalphabetic cipher.

• The Vigenère cipher uses different substitutions (depending on the key): 
polyalphabetic cipher.
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Plaintext:  ATTACKTONIGHT
Key:        MYKEYMYKEYMYK

Ciphertext: MRDEAWRYRGSFD

Vigenère: 5 different types of substitutions (with this key)

Plaintext:  ATTACKTONIGHT
Key: -3

Ciphertext: XQQXZHQLKFDEQ

Caesar: always the same substitutions



Substitution ciphers

• Monoalphabetic substitution ciphers can be more complex than the Caesar 
cipher.

• The most complex monoalphabetic cipher: pick a random permutation of the 
alphabet as substitution
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Plaintext:  ABCDEFGHIJKLMNOPQRSTUVWXYZ
Key:  VMRKHXUTEPGLDNYBCFZOJAIWSQ
Ciphertext: VMRKHXUTEPGLDNYBCFZOJAIWSQ

In this example, to encrypt,

we substitute the ith letter in the 

alphabet with the ith letter in the key.

How many possible 

keys are there in an 

alphabet of 26 letters?

Do you have to try 

every possible key to 

break something like 

this?



Daily cryptogram
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• A daily cryptogram is 

a (monoalphabetic) 

substitution cipher.

• We will see why we 

don’t need to try 

every single key to 

break this…

We know this is a 

definition written in 

English. How would you 

crack the plaintext?



Daily cryptogram
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Breaking weak ciphers

• What do you think of the security of this 
substitution cipher?

• How would you automate the attack, if you had 
a very long ciphertext?

• In any language, the frequencies of each letter 
are not uniform. This means that, with frequency 
analysis, we can break substitution ciphers easily.
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Wikipedia: “letter frequency”

What if we made 

substitutions of pairs 

of characters?



Index of Coincidence

• The Index of Coincidence (IC) is a metric that measures how likely 
it is that, if you grabbed two random letters from a text, both 
letters were the same letter.

𝐼𝐶 = 𝑐
𝑛𝐴

𝑁
×

𝑛𝐴 − 1

𝑁 − 1
+

𝑛𝐵

𝑁
×

𝑛𝐵 − 1

𝑁 − 1
+ ⋯

𝑐 = 26 for English (the number of letters in the alphabet)

• Different languages have different ICs (e.g., English is 1.73, French is 
2.02…)

• It can be used as a metric of how English-like a text is. Can be used 
as a tool when cracking a cipher.

• E.g., it could be used to detect the length of the key of a Vigenère 
cipher…

• There are more sophisticated fitness tests (e.g., using digram, 
trigram, or quadgram frequencies).
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Wikipedia: “letter frequency”



Affine ciphers

• The affine cipher is an example of a monoalphabetic substitution cipher.

• To encrypt:
1. Map each plaintext letter to a number (e.g., A→0, B→1, C→2,…,Z→25)

2. For each letter 𝑥, compute 𝑦 = 𝑥𝑎 + 𝑏  mod 26.

3. Then, convert the 𝑦’s back to letters.
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What is the key?

How do we decrypt?

Does this always 

work?



The Playfair cipher

• Invented by Wheatstone (in 1854) for the telegraph, but has the name of Lord Playfair, who made it popular.

• Used later for military purposes (e.g., World War 1, although it was already deemed as insecure back then).

• It is a digram substitution cipher (replaces two letters for two other letters).
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Example from the Wikipedia.

How it works:

• The alphabet space is 25 characters 

(e.g., we assume J and I are the same 

letter, represented as I).

• The key is a permutation of those 25 

characters (e.g., random permutation, 

or a password plus padding).

• Avoid identical consecutive letters 

(e.g., add an X in between every two 

repeated letters).

• Separate letters into pairs

• Apply the substitution following 

Playfair’s rules.

"hide the gold in the tree stump” → 

"HI DE TH EG OL DI NT HE TR EX ES TU MP"

Ciphertext = "BM OD ZB XD NA BE KU DM UI XM MO UV IF"

https://en.wikipedia.org/wiki/Playfair_cipher


The Enigma machine

• Used by the Nazi Germany during World War II.

• Implemented a substitution cipher, but the mapping 
will change with rotating rotors after pressing one key.

25image source: http://enigma.louisedade.co.uk/wiringdiagram.png

Plugboard

Keyboard

Lightboard

Rotors

http://enigma.louisedade.co.uk/wiringdiagram.png


The Enigma machine

• The “secret key” is the initial configuration 
of the machine.

• There were 5 possible rotors, from which 
you select three in a particular order.

• Each ring has 26 possible initial positions.

• The plugboard had 150*1012 combinations.

• The total number of possible keys was 
around 159*1018 

• Problem: a letter could never match itself!! 
(an encryption of a letter could never be 
that same letter).
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How many 

rotor 

permutations?

How many initial 

rotor settings?



• Problem: a letter could never match itself!! 
(an encryption of a letter could never be 
that same letter)

• E.g., ciphertext:  WJEQLDUYBNHJXP

• If you know the message has the word 
weather in German (WETTER)…

• This “small” leakage allows eventually 
breaking the cipher.

• Alan Turing built the Bombe Machine to 
crack Enigma Code in 20 minutes.

The Enigma machine
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WETTER

What kind of attack model is this?

• Ciphertext-only attack

• Known plaintext attack

• Chosen plaintext attack

• Chosen ciphertext attack

WETTER
WETTER



Vernam Cipher

• Named after Gilbert Standford Vernam, who invented it in 1917.

• Encrypt plaintexts bit-by-bit, by XOR-ing with the key

• Plaintext (t bits): 𝑀 = [𝑚1, 𝑚2, … , 𝑚𝑡]

• Key (t bits): 𝐾 = [𝑘1, 𝑘2, … , 𝑘𝑡]

• Ciphertext (t bits): 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑡 = 𝑚1, 𝑚2, … , 𝑚𝑡 ⊕ [𝑘1, 𝑘2, … , 𝑘𝑡]

• XOR reminder:
0 ⊕ 0 = 0,  0 ⊕ 1 = 1,  1 ⊕ 0 = 1,  1 ⊕ 1 = 0

28

How do we 

decrypt?

Is this a 

symmetric or 

asymmetric 

cipher?



The One-Time Pad

• Vernam cipher:  𝐶 = 𝑀 ⊕ 𝐾

• If the key 𝐾 of Vernam cipher is randomly (uniformly) generated and never re-
used, it is called the one-time pad. 

• The one-time pad is a very unique cryptosystem: 
it provides information-theoretic security

• Example: “HELLO” encoded in ASCII-7:

• A possible encryption with a one-time pad:
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Why doesn’t the “try 

every key” work here?

1001010 1100001 1111110 1010011 1110001

1101000 1100101 1101100 1101100 1101111

0100010 0000100 0010010 0111111 0011110

Secure against an adversary 

with unlimited computing 

resources and time!!



Shortcomings of the One-Time Pad

• We have perfect confidentiality! What about integrity?

• Assume your boss has your salary (in binary) encrypted with a one-time pad, and 
you have access to the ciphertext. What can you do with this?
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11111101010011111001011101000101

00000000000000010101111110010000



Shortcomings of the One-Time Pad

• To encrypt an n-bit message, we have to use a secret n-bit key… and we cannot 
re-use it.
• Why not just keep the n-bit message “secret”?

• What happens if we re-use the key? (Two-Time Pad)
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1001010 1100001 1111110 1010011 11100011101000 1100101 1101100 1101100 1101111

0100010 0000100 0010010 0111111 0011110

“HELLO”

1000000 1111101 1110111 0011111 01111101100010 1111001 1100101 0100000 0100000

“BYE ”

How do we attack this, if 

we get the ciphertexts?

Completely insecure!! But 

still requires a bit of work 

to break…



A visual example

• We get these two images, that have been encrypted with a one-time pad (but 
with the same pad/key).

• What do we do with them?
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CPEN 442 – Introduction to Cybersecurity

Module 2 – Cryptography

Part 2 – Symmetric crypto
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Symmetric (or Secret-key) cryptography

• We use the same key to encrypt and to decrypt

35

Encrypt Decrypt

Let’s use this 

secret key!
Sounds good! This “key exchange” is easy to do in 

person, but harder to do over the 

Internet. Eve could be watching! 

(we’ll see how to fix this later)

Note: the encrypt and decrypt boxes 

do not have to do the same operations 

with the key. As long as the same key 

can be used to encrypt/decrypt, it is 

symmetric crypto

?????



Ancient crypto: which ones are symmetric?
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Caesar cipher

Affine cipher

𝑦 = 𝑥𝑎 + 𝑏  mod 26.

Plaintext:  ATTACKTONIGHT
Key:        MYKEYMYKEYMYK

Ciphertext: MRDEAWRYRGSFD

Vigenère cipher

Vernam cipher

𝐶 = 𝑀 ⊕ 𝐾



Computational security

• In contrast to the One-Time Pad “perfect” or “information-theoretic” security, 
most cryptosystems have “computational” security.

• This means they can be broken if Eve does enough work.

• How much is “enough”?

• At worst, Eve tries every key:
• How long it takes depends on how many possible keys there are

• Usually, there are “shortcuts” and Eve does not have to try every key
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Computational security: some numbers

38

Key size

Computer 

(≈ 𝟏. 𝟕 ⋅ 𝟏𝟎𝟕 

keys/second)

Lab of 100 computers 

(≈ 𝟏. 𝟕 ⋅ 𝟏𝟎𝟗 

keys/second)

Bitcoin network 

(≈ 𝟒 ⋅ 𝟏𝟎𝟐𝟎 

keys/second)

40-bit 18 hours 11 minutes 2.7 ns

56-bit 134 years 16 months 0.18 ms

128-bit 6.3 ⋅ 1023 years 6.3 ⋅ 1021 years 2.7 ⋅ 1010 years

256-bit … … …

• 40-bit crypto: was the legal export limit for a long time in the US 

(cryptosystems were classified as munitions until the late 90’s).

• 56-bit crypto: was the US government standard (DES) for a long time.

• 128-bit crypto: modern standard.

• 256-bit crypto: we “think” enough for post-quantum security in AES.

• 2.7 ⋅ 1010 years: around 2 times larger than the age of the universe, around 2.7 times larger 

than the expected lifetime of the sun.



Computational security: some numbers
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• Wait, but computers get faster over time!

• Moore’s law: “the number of transistors on a microchip doubles about every two 
years”.

• We can just wait a few hundreds of years, then crack the key in less than one 
hour!

• Actually, there is a much better strategy…

Do we believe this?
What about quantum 

computers?
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https://xkcd.com/538/

A better strategy

https://xkcd.com/538/


Types of symmetric cryptosystems

Secret-key cryptosystems come in two major classes:

• Stream ciphers

• Block ciphers
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Stream ciphers

• A stream cipher operates one bit at a time.

• Basically, like the one-time pad, but using a pseudorandom keystream, instead of a 
truly random one.

42

Encrypt

Encrypt
Pseudorandom 

keystream 

generator

Key (fixed length)

Keystream

(as long as it 

needs to be)

XOR

Do these rely on 

confusion or diffusion?



Stream ciphers: preventing keystream re-use

• Stream ciphers can be very fast
• This is useful if you need to send a lot of data securely.

• You can usually encrypt bit-by-bit

• However, be careful with key(stream) re-use! (remember the two-time pad)

• Solution: concatenate the key with a nonce. (This is like the “salt”)

43

Encrypt

Pseudorandom 

keystream 

generatorKey || nonce

Keystream



Stream ciphers: preventing keystream re-use

• Very important conceptual difference!! Keys are secret, nonces are not
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Encrypt

Pseudorandom 

keystream 

generatorKey || nonce

Keystream

What do we gain by 

making the nonce longer?

What do we gain by 

making the nonce secret?

What do we gain by making the 

key longer?



Pseudo-random number generators

• There is some math involved in here, that we do not have time to see.

• A common approach is using Linear-Feedback Shift Registers (LFSRs)

• A toy example:

45Example from: https://www.eetimes.com/tutorial-linear-feedback-shift-registers-lfsrs-part-1/

Notice the 

sequence has 

a period of 7

https://www.eetimes.com/tutorial-linear-feedback-shift-registers-lfsrs-part-1/


The A5/1 cipher

• Created in 1987 and used in GSM (mobile 
communications).

• Initially secret, but reverse engineered in 1999.

• This is not secure! But it’s a nice toy example.

• A5/1 is a combination of three LSFRs:
• The registers are of size 19, 22, and 23.

• The sum 64, which is the size of the secret key.

• The period of the sequence is actually 264.

• You don’t need to know any details here: just 
have a general idea of how this “works”.
• (You don’t need to know about those orange register 

positions either…)
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Image from: https://en.wikipedia.org/wiki/A5/1

https://en.wikipedia.org/wiki/A5/1


Salsa20 and ChaCha20

• ChaCha20 is a variation of Salsa20 which is increasingly popular (Chrome, 
Android). 

• Again: details are not important here; this is to give you an idea of how stream 
ciphers work.

• Key: 256 bits.
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32-bit

word

32-bit

word

32-bit

word

32-bit

word
The internal state has sixteen 32-bit 

words arranged in a 4x4 square

All of this from: https://en.wikipedia.org/wiki/Salsa20

7

9

13

18

Quarter-round: applied to rows 

and columns of that matrix
• Salsa20 does 20 

rounds of mixing.

• Many technicalities 

omitted here…

• ChaCha20 is 

similar, with a 

different quarter-

round and initial 

internal state

https://en.wikipedia.org/wiki/Salsa20


Relevant Stream Ciphers

• WEP and PPTP are great examples of how not to use stream ciphers.

• RC4 was the most common stream cipher on the Internet but is now 
deprecated.

• ChaCha is increasingly popular (Chrome and Android)

• SNOW3G in mobile phone networks
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Block ciphers

• A block cipher operates one block at a time.

• Blocks are usually 64 or 128 bits long.

• These “block encryption” boxes provide both confusion and diffusion.
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Encrypt

Encrypt

Encrypt

block

• If the plaintext is smaller 
than one block: padding

• If it is larger: multiple 
blocks
• What we do with 

multiple blocks is called 
mode of operation of 
the block cipher.



Modes of operation

We will see the following, but there are more…

• Electronic Code Book (ECB)
• Do not use this!!

• Cipher Block Chaining (CBC)
• You use this with authentication (MAC) only!

• Counter Mode (CTR)
• Interesting but you use GCM instead

• Galois Counter Mode (GCM)
• This mode is similar to CTR, but also adds authentication

• We might see this during the authentication/integrity part

50



Electronic Code Book (ECB) mode

• ECB: encrypt each successive block separately
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Encrypt

block

Encrypt

block

Encrypt

block

𝑀1 𝐸 𝐶1

𝐾

𝑀2 𝐸 𝐶2

𝐾

𝑀3 𝐸 𝐶3

𝐾

⋮

Enough drawings, 

cause we need space 

now…



Electronic Code Book (ECB) mode
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𝑀1 𝐸 𝐶1

𝐾

𝑀2 𝐸 𝐶2

𝐾

𝑀3 𝐸 𝐶3

𝐾

⋮

What happens if the plaintext 

𝑀 has some blocks that are 

identical 𝑀𝑖 = 𝑀𝑗?



Improving ECB

• We can provide “feedback” among different 
blocks, to avoid repeating patterns.
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𝑀1 𝐸 𝐶1

𝐾

𝑀2 𝐸 𝐶2

𝐾

𝑀3 𝐸 𝐶3

𝐾

⋮

Does this avoid repeating 

patterns?

Any issues here?



Improving ECB

• Another way of providing “feedback”
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𝑀1 𝐸 𝐶1

𝐾

𝑀2 𝐸 𝐶2

𝐾

𝑀3 𝐸 𝐶3

𝐾

⋮

Does this avoid repeating 

patterns?

Any issues here?

What would happen if we 

encrypt the same message 

twice with the same key?



Cipher Block Chaining (CBC) mode

• This solves the issue of repeating patterns in 
blocks or the whole plaintext.

• The IV is the Initialization Vector.
• Also called nonce.

• Also called salt.

• We also share the IV in the clear!
• Remember it is “conceptually different” than the key

• Do not re-use it!
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𝑀1 𝐸 𝐶1

𝐾

𝑀2 𝐸 𝐶2

𝐾

𝑀3 𝐸 𝐶3

𝐾

⋮

𝐼𝑉

This could be CBC



Counter mode (CTR)

• Counter mode turns a block cipher into a stream cipher

• GCM also adds authentication, we might see it later…
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Nonce || 1 𝐸 𝐶1

𝐾

Nonce || 2 𝐸 𝐶2

𝐾

Nonce || 3 𝐸 𝐶3

𝐾

⋮

𝑀1

𝑀2

𝑀3



What about the “Encrypt block” box?

• These are modes of operation.

• The actual block cipher is the “Encrypt block” box       .

• In 1977, the National Institute of Standards and Technology (NIST) adopted the 
Data Encryption Standard (DES) algorithm.

• This was the “official” encryption algorithm for a long time.

• In 1997, NIST announced the Advanced Encryption Standard (AES) competition.

• In 1998, 15 AES candidates were announced.

• In 2000, NIST announced its selection of AES (Rinjdael).

• Today: if you are going to use a block cipher, you should always use AES (Rinjdael), 
unless you have a very, very good reason.
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Advanced Encryption Standard (AES)

• Based on substitution-
permutation networks

• Block size of 128 bits (fixed)

• Key sizes of 128, 192, or 256 bits

• AES operates on a 4x4 matrix 
where each element is a byte (128 
bits total)
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AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Initial round

Rounds:

• 9 rounds for 128-bit key

• 11 rounds for 192-bit key

• 14 rounds for 256-bit keys

Final round



AES Key Schedule

• The AES key gets “expanded” into different sub-keys to use in the AddRoundKey 
steps of the AES algorithm.

• Key expansion:
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Key 

scheduler

Round key 0

Round key 1

Round key 2

Round key 3

… 

128, 192, or 256 bits

You do not need to 

know the 

particulars of this



Step 1: SubBytes

• Convert each byte using a substitution box (S-box)

• Each byte is replaced for another byte

• For decryption: we use the inverse substitution

• Example (representing bytes in hex)

• This adds confusion (very non-linear, destroys patterns)

60

3a

00

80

63



Step 2: ShiftRows

• Shift the 𝑖th row (𝑖 ∈ [0,1,2,3]) 𝑖 positions to the left

• This adds diffusion (take this with a grain of salt, it does not make sense to think 
of these properties at a “step-by-step” level)

• To decrypt, you do the opposite
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80

63

80

63



Step 3: MixColumns

• Multiply each column using a linear transformation (matrix multiplication)

• AES arithmetic is in Galois Field using polynomials… but you don’t need to know 
anything about this, other than it’s adding some more diffusion, and it’s an 
invertible operation.
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80

63

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2



Step 4: AddRoundKey

• XOR the matrix with another matrix derived from the AES key, from some “key 
schedule” that generates a “subkey” for each round
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Key
Key 

scheduler



Advanced Encryption Standard (AES)

• Based on substitution-
permutation networks

• Block size of 128 bits (fixed)

• Key sizes of 128, 192, or 256 bits

• AES operates on a 4x4 matrix 
where each element is a byte (128 
bits total)
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AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Initial round

Rounds:

• 9 rounds for 128-bit key

• 11 rounds for 192-bit key

• 14 rounds for 256-bit keys

Final round



Symmetric cryptography, concluding remarks

• Good choices: AES-GCM or ChaCha20+Poly1305
• GCM and Poly1305 provide “authentication” (and integrity). You do not need to know the 

details.

• That’s it, we have solved confidentiality!

• However… this requires having a shared key between sender and receiver.

• How do we do this?
• Meet in person

• Diplomatic courier

• …

• Or… we invent new technology… (Part 3)

• (we still don’t have integrity and authentication, that’s in Part 4)
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CPEN 442 – Introduction to Cybersecurity

Module 2 – Cryptography

Part 3 – Public-key crypto
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Module Outline
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• Confusion and Diffusion
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• Definition
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Public-key (or Asymmetric) cryptography

• Invented (in public) in the 1970’s.

• We use a different key to encrypt and decrypt.

• The encryption key is public, and the decryption key is private

• Alice and Bob do not need to agree on a shared secret!

• Some common examples: RSA, ElGamal, ECC, NTRU, McEliece
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Encrypt Decrypt



How does it work?

• Bob creates a key pair (𝑒𝑘 , 𝑑𝑘).
• It must be hard to derive 𝑑𝑘 from 𝑒𝑘.

• Bob gives everyone a copy of his public encryption key 𝑒𝑘.

• Alice uses Bob’s key to encrypt a message for Bob 𝐶 = 𝐸𝑒𝑘
(𝑀).

• Bob uses his private decryption key 𝑑𝑘 to decrypt the message: 𝑀 = 𝐷𝑑𝑘
(𝐶).
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Encrypt Decrypt

𝑒𝑘

𝑒𝑘 𝑑𝑘



How does it work?

• We want a mathematical operation that is 
very easy to do in one direction using 𝑒𝑘.

• And very hard to “un-do” given 𝑒𝑘.

• But easy to “un-do” given 𝑑𝑘.

• These are called “trapdoor functions”
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Encrypt Decrypt

𝑒𝑘 𝑑𝑘



Textbook RSA

• RSA was the first popular public-key encryption method (published 1977).

• It relies on the practical difficulty of the factoring problem:
• Given the product of two large prime numbers 𝑛 = 𝑝 ⋅ 𝑞, it is very hard to factor 𝑛.

• We are working with modular arithmetic: integer numbers that “wrap around”.

• High-level idea:

• It is easy to find large integers 𝑒, 𝑑, and 𝑛 such that:

𝑀𝑒 𝑑 ≡ 𝑀 mod 𝑛

• But knowing 𝑒 and 𝑛 (and even M), it is extremely hard to find 𝑑.
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Some discrete math background (simplified)

• The multiplicative inverse of 𝑎 modulo 𝑛 (denoted 𝑎−1) only exists if 𝑎 and 
𝑛 are co-prime: gcd(𝑎, 𝑛) = 1 (greatest common divisor).
• We mentioned this when we talked about affine ciphers

• We can find the multiplicative inverse with the extended Euclidean 
algorithm. 
• This algorithm finds 𝑥 and 𝑦 such that:

𝑎 ⋅ 𝑥 + 𝑛 ⋅ 𝑦 = gcd(𝑎, 𝑛)

• What is the inverse of 𝑎 mod 𝑛 in this equation?
• If we write this mod 𝑛, we get 𝑎 ⋅ 𝑥 ≡ 1 (mod 𝑛),

• So 𝑥 is 𝑎−1.

• We will not see the details of this algorithm, but we’ll assume we can 
compute an inverse of 𝑎 mod 𝑛 if we know 𝑎 and 𝑛, and if gcd 𝑎, 𝑛 = 1.
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ext. Euc. 

alg.

𝑎, 𝑛

𝑥, 𝑦



Some discrete math background (simplified)

• What about the multiplicative inverse in the “exponents”?

• E.g., what is the 𝑥 such that:
𝑀𝑎⋅𝑥 ≡ 𝑀 mod 𝑛

• Turns out, when 𝑛 = 𝑝 ⋅ 𝑞 for 𝑝 and 𝑞 prime, these “exponents” are in a 
field mod 𝜑 𝑛 = (𝑝 − 1)(𝑞 − 1).

• For example:  𝑀𝑎+𝜑(𝑛) ≡ 𝑀𝑎 (mod 𝑛).
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When does the 

𝑥 above exist?

How do we 

compute the 𝑥 

above? What do 

we need?



Textbook RSA (simplified)

• Choose two large primes 𝑝 and 𝑞 (these are secret)

• Compute 𝑛 = 𝑝 ⋅ 𝑞.

• Compute 𝜑 𝑛 = (𝑝 − 1)(𝑞 − 1).

• Choose a number 𝑒 such that gcd 𝑒, 𝜑 𝑛 = 1.

• Determine 𝑑 such that 𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛))

• Public key: (𝑒, 𝑛)

• Private key 𝑑 (the other numbers can be discarded).

• Encryption: 𝐶 ≡ 𝑀𝑒  (mod 𝑛).

• Decryption: 𝑀 ≡ 𝐶𝑑  (mod 𝑛).
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• Note: the decryption 

indeed works.

𝑀𝑒 𝑑 ≡ 𝑀 mod 𝑛

• Note: factoring 𝑛 breaks 

this! Why?

• This is textbook RSA, 

never do this!! (we’ll see 

one of the reasons next).



Recall

• We want a mathematical operation that is 
very easy to do in one direction using 𝑒𝑘.

• And very hard to “un-do” given 𝑒𝑘 = (e, n)

• But easy to “un-do” given 𝑑𝑘 = 𝑑.

• These are called “trapdoor functions”
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Encrypt Decrypt

(𝑒, 𝑛) 𝑑

(𝑒, 𝑛)

Modular exponentiation given 

(𝑒, 𝑛) is easy: 𝐶 ≡ 𝑀𝑒 (mod 𝑛)

Modular exponentiation 

is very hard to un-do 

without 𝑑.

𝐶 ≡ 𝑀𝑒 (mod 𝑛) 𝑀 ≡ 𝐶𝑑 (mod 𝑛)



Example of Textbook RSA

Assume 𝑝 = 53, 𝑞 = 101, 𝑒 = 139, 𝑑 = 1459.

1. Compute 𝑛.

2. Compute 𝐶1 = 𝐸𝑒(1011). Verify decryption 
works.

3. Compute 𝐶2 = 𝐸𝑒(4). Verify decryption 
works.

4. Compute 𝐷𝑑(𝐶1 ⋅ 𝐶2). What is happening? 
Why? 
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Textbook RSA cheat sheet

• Choose primes 𝑝 and 𝑞.

• Compute 𝑛 = 𝑝 ⋅ 𝑞.

• Choose 𝑒 such that 
gcd 𝑒, 𝜑 𝑛 = 1. 

• Determine 𝑑 such that 𝑑 ≡
𝑒−1 (mod 𝜑(𝑛))

• Public key: (𝑒, 𝑛)

• Private key 𝑑

• Encryption: 
𝐶 ≡ 𝑀𝑒 (mod 𝑛).

• Decryption: 
𝑀 ≡ 𝐶𝑑  (mod 𝑛).

Malleability: we can transform a ciphertext into 

another ciphertext that decrypts to a “related” 

plaintext.

This is typically (but not always!) undesirable!

𝑛 = 53 ⋅ 101 = 5353

𝐶1 = 1011139 = 5253

𝐶2 = 4139 = 324

5253 ⋅ 324 1459 = 4044



IND-CPA Game

• IND-CPA: Indistinguishability under chosen-plaintext attack

• An encryption scheme provides IND-CPA if the adversary cannot win the 
following game with probability larger than 0.5.
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Challenger Adversary

1. generate 

a keypair

2. send public key

6. send encryption

4. send them 3. choose two 

plaintexts
𝑀0 𝑀1

7. guess 𝑏; if 

correct, game won!

In textbook RSA: can the 

adversary win this game with 

probability higher than 0.5?

5. choose a 

random bit 

𝑏 ← {0,1}, 
encrypt 𝑀𝑏



Chosen Ciphertext Attack in textbook RSA

• We are Eve. Alice is using RSA and her public 
key is (𝑒, 𝑛).

• Bob sends a super-secret message 𝑀, 
encrypted as 𝐶 = 𝐸𝑒 𝑀 . We intercept 𝐶.

• Alice is convinced her textbook RSA is very 
secure, so she is willing to decrypt any 
ciphertext we send her except for 𝐶, and send 
us the decryption back.

• How can we guess 𝑀?
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Textbook RSA cheat sheet

• Choose primes 𝑝 and 𝑞.

• Compute 𝑛 = 𝑝 ⋅ 𝑞.

• Choose 𝑒 such that 
gcd 𝑒, 𝜑 𝑛 = 1. 

• Determine 𝑑 such that 𝑑 ≡
𝑒−1 (mod 𝜑(𝑛))

• Public key: (𝑒, 𝑛)

• Private key 𝑑

• Encryption: 
𝐶 ≡ 𝑀𝑒 (mod 𝑛).

• Decryption: 
𝑀 ≡ 𝐶𝑑  (mod 𝑛).



Shortcomings of textbook RSA

• We saw that textbook RSA is not IND-CPA secure.

• It is also vulnerable to chosen ciphertext attacks.

• Choosing a very small 𝑒 (for example 𝑒 = 3) can lead to cases where 𝑀𝑒 < 𝑛, so 
that computing a regular cubic root yields 𝑀.

• There are other issues…

• That’s why, in actual implementations of RSA, we use padding techniques (OAEP) 
to pre-process the plaintext before encryption:
• This makes the encryption randomized every time (IND-CPA secure).

• It also prevents the chosen ciphertext attack from the previous slide (making RSA non-
malleable).
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Public key sizes

• Recall that, without shortcuts, Eve would have to try all 2128 keys in order to 
read a message encrypted with a 128-bit key.

• Unfortunately, all of the public-key methods we know do have shortcuts.

• 128-bit RSA:
• Option 1: try every possible key. This takes 2128 work, which is a lot!

• Option 2: try to factor 𝑛. This takes just 233 work, which is easy!

• If we want Eve to have to do 2128 work, we need to use a much longer public key…
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Comparison of key sizes

• This is a comparison of key sizes for roughly equal strength.

• Quantum computers can break RSA/ECC and others way faster than this (e.g., 
see Shor’s algorithm to break RSA).
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AES RSA ECC

80 1024 160

116 2048 232

128 2600 256

160 4500 320

256 14000 512

Takeaways: 

• Symmetric crypto provides 

more security for equal key 

sizes than public-key crypto.

• For equal strength, symmetric 

crypto needs smaller keys, and 

it’s also faster and requires less 

bandwidth.

https://www.youtube.com/watch?v=lvTqbM5Dq4Q


Hybrid cryptography

• Secret-key crypto: shorter keys, faster, same key to encrypt and decrypt.

• Public-key crypto: longer keys, slower, different key to encrypt and decrypt.

• But public-key cryptography is very convenient (no shared secret).

• Hybrid crypto: get the best of both worlds
• Pick a random 128-bit key 𝐾 for a secret-key cryptosystem.

• Encrypt the (possibly large) message 𝑀 with the key 𝐾 (e.g., using AES).

• Encrypt the key 𝐾 using a public-key cryptosystem.

• Send the encrypted message and the encrypted key to Bob.

• This (or a similar) hybrid approach is used for almost every cryptography 
application on the Internet today.
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Knowledge check!
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Public-key params:  (𝑒𝐴, 𝑑𝐴)
Secret-key params: 𝐾

Public-key params:  (𝑒𝐵 , 𝑑𝐵)
Secret-key params: ?

Public keys:

𝑒𝐴, 𝑒𝐵

• Encrypt/decrypt functions: 𝐸𝑘𝑒𝑦(⋅), 𝐷𝑘𝑒𝑦 ⋅ .

• Concatenation: ||
• Alice wants to send a very large message 𝑀 to Bob.

How does Alice 

build the message?

How does Bob recover 

the message?



Is that all?

• We know how to send secret messages, and Eve cannot do anything about it.

• However, Mallory could modify our encrypted messages in transit!

• Mallory won’t necessarily know what the message says, but can still change it in 
an undetectable way
• e.g., the bit-flipping attacks on stream ciphers

• This is counterintuitive, but often forgotten…

• How do we make sure that Bob gets the same message that Alice sent?
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Part 4 – Integrity and Authentication

85



Module Outline
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Integrity in non-malicious settings

• How do we tell if a message has changed in transit?

• Simplest answer: use a checksum
• For example, add up all the bytes of a message.

• The last digits of serial numbers (credit card, ISBN, etc.) are usually checksums.
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message checksum

compute 

checksum

message checksum

compute 

checksum

Are they 

equal?



Integrity in malicious settings

• Checksum does not work!

• We need something else…

88

message checksum

compute 

checksum

Are they 

equal?

Yes!!

malicious msg. checksum

compute 

checksum

malicious msg. checksum

compute 

checksum

If the message ∥ checksum was encrypted with a 

stream cipher: can Mallory still do this?

She can XOR something to the encrypted message, 

and most likely predict which positions she also has 

to change in the checksum



Cryptographic Hash Functions

• A hash function ℎ takes an arbitrary length string 𝑥 and computes a fixed-length 
string 𝑦 = ℎ(𝑥) called a message digest (or hash, or fingerprint, or tag).

• Common examples:
• MD5

• SHA-1

• SHA-2

• SHA-256

• SHA-512

• SHA-3 (AKA Keccak, from 2012 on)

• …
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ℎ𝑥 𝑦



Cryptographic hash functions: properties
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1. Preimage resistance:

Given 𝑦, it is hard to find 𝑥 such that ℎ 𝑥 = 𝑦 (i.e., 

it is hard to find a “preimage” of 𝑥)

2. Second preimage resistance:

Given 𝑥, it is hard to find 𝑥′ ≠ 𝑥 such that ℎ 𝑥 =
ℎ(𝑥′) (i.e., a “second preimage” of ℎ(𝑥)). Note that 

𝑥 is fixed, and we have to find 𝑥′.
3. Collision resistance:

It is hard to find any two distinct values 𝑥, 𝑥′ such 

that ℎ 𝑥 = ℎ(𝑥′) (i.e., a “collision”).

Note that we have free choice of 𝑥 and 𝑥′.

ℎ𝑥 𝑦

ℎ𝑥

ℎ𝑥′

𝑦

ℎ has a 

property if it 

is hard for the 

adversary to 

find the thing 

in red (given 

the things in 

black).

ℎ𝑥

ℎ𝑥′

𝑦

Easiest-to-hardest properties to break?

Weakest-to-strongest properties?

Cryptographic hash functions should have three properties:



It must be “hard”

• We said that it must be “hard” for the adversary to break those properties?

• What is “hard”?

• For SHA-1, for example, it takes 2160 work to find a preimage or second 
preimage, and 280 work to find a collision using a brute-force search.
• However, there are faster ways than brute force search to find collisions in SHA-1 or MD5.

• Collisions are always easier to find than preimages or second preimages due to 
the well-known birthday paradox.
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The birthday paradox

If there are 𝑛 people in a room, what is the probability that at least two people have the 
same birthday?

*assuming the birthday distribution is uniform and we’re all iid samples

• For 23 people, the probability is larger than 50%

• For 40 people, it’s almost 90%

• For 50 people, around 97%

• For 60 people, more than 99%
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Let’s use a hash function!

• Mallory can break integrity…
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𝑀 ℎ(𝑀)

compute 

hash

Are they 

equal?

Yes!!

𝑀′ ℎ 𝑀′

compute 

hash

malicious msg. digest

compute 

hash



Let’s use a hash function!

• Mallory can still break integrity!
• The integrity should not depend on the decrypted message “making sense”.

• The integrity check should work even if 𝑀 was a message of randomly sampled bits; we still 
want Alice to be able to send that to Bob.
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𝐸𝐾(𝑀) ℎ(𝐸𝐾 𝑚 )

compute 

hash

Are they 

equal?

Yes!!

𝑀′ ℎ(𝑀′)

compute 

hash

malicious msg. digest

compute 

hash



Cryptographic hash functions

• Hash functions provide integrity guarantees only when there is a secure way of 
sending and/or storing the message digest.
• For example, Bob can publish a hash of his public key (i.e., a message digest) on his business 

card.

• Putting the whole key on there would be too big.

• But Alice can download Bob’s key from the Internet, hash it herself, and verify that the result 
matches the message digest on Bob’s card.

• What if there is no external channel to do this?
• For example, you’re using the Internet to communicate…

• We can use “keyed hash functions”!
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Authentication

• Authentication and integrity go together in cryptography: we either provide both, 
or none.
• If we cannot verify the “authenticity” of a sender, then that sender could be Mallory, and she 

could have modified the plaintext message…

• Authentication/integrity should not rely on how “reasonable” the decrypted 
plaintext 𝑀 looks.
• We need a separate tool to decide whether a message comes from the intended sender, and 

whether the message has been modified in transit or not.

• The authentication check should work even when 𝑀 is a totally random message.

• Two main ways of providing authentication:
• MACs (Message Authentication Codes)

• Digital Signatures
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Message Authentication Codes (MACs)

• MACs are basically “keyed hash functions”.

• Only those who know the secret key can generate, or even check, the computed 
hash value (sometimes called a tag).

• Can Mallory forge a message with a valid tag? What does she need to do so?
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MAC MAC
=?

Common examples of MACs:

• SHA-1-HMAC

• SHA-256-HMAC

• CBC-MAC



HMAC

• HMAC is a way of building a MAC from a hash function.

• Let’s use HMAC𝐾(𝑀) to denote the HMAC with key 𝐾 for message 𝑀.

• What HMAC does (simplified):

HMAC𝐾 𝑀 = ℎ 𝐾 ∥ ℎ 𝐾 ∥ 𝑀

• The “double hashing” is needed to prevent some “length extension attacks” that 
are out-of-scope for this course.
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Combining ciphers and MACs

• In practice, we often need both confidentiality and message integrity.

• There are multiple strategies to combine a cipher and a MAC when processing a 
message.
• MAC-then-Encrypt

• Encrypt-and-MAC

• Encrypt-then-MAC

• Ideally, your crypto library already provides an authenticated encryption mode 
that securely combines the two operations, so you don’t have to worry about 
getting it right.
• Some examples:

• GCM

• CCM (used in WPA2, see later)

• OCB mode
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Combining ciphers and MACs, let’s try it!

Alice and Bob have a secret key 𝐾 for a secret-key cryptosystem 𝐸𝐾 ⋅ , 𝐷𝐾 ⋅ , 
and a secret key 𝐾′ for their MAC (𝑀𝐴𝐶𝐾′ ⋅ ). Concatenation is ∥. How does Alice 
build a message for Bob in the following scenarios?

• MAC-then-Encrypt: compute the MAC on the message, then encrypt the message 
and MAC together, and send that ciphertext.

𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝑀

• Encrypt-and-MAC: compute the MAC on the message, compute the encryption 
on the message, and send both.

𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝑀

• Encrypt-then-MAC: encrypt the message, compute the MAC on the encryption, 
send encrypted message and MAC.

𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝐸𝐾 𝑀
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What is the right order?

nice blog post 

• Usually, we want the receiver to verify the MAC first. What is the recommended 
strategy, then?

• The recommended strategy is usually Encrypt-then-MAC:

𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝐸𝐾 𝑀

• There is a nice blog post that calls this the “Doom principle”: if you have to 
perform any cryptographic operation before verifying the MAC on a message 
you’ve received, it will somehow lead inevitably to doom.
• It explains two simple attacks that can happen if the Doom principle is violated.

• However, the others might have some uses… (we might see some examples of 
what can go wrong with this)
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https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html


Repudiation

• Bob can be assured that Alice is the one who sent 𝑀 and that the message has 
not been modified since she sent it.

• We have confidentiality, integrity, and authentication!

• This is like a “signature” on the message… but not quite the same!

• Bob cannot prove to Carol that Alice sent 𝑀: this is called repudiation.
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Why not?

Alice sent 𝑀, look:  𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝐸𝐾 𝑀

Did she…?

𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝐸𝐾 𝑀

𝐾, 𝐾′ 𝐾, 𝐾′



Repudiation

• Alice can just claim that Bob made up the message 𝑀, and calculated the MAC 
himself.

• This is called repudiation, and we sometimes want to avoid it.

• Some interactions should be repudiable.
• Private conversations

• Some interactions should be non-repudiable.
• Electronic commerce
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Alice sent 𝑀, look:  𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝐸𝐾 𝑀

Did she…?

𝐸𝐾 𝑀 ∥ 𝑀𝐴𝐶𝐾′ 𝐸𝐾 𝑀

𝐾, 𝐾′ 𝐾, 𝐾′



Digital signatures

• MACs are the “symmetric” version of authentication.

• Digital signatures are the “asymmetric” version of authentication.

• Remember, to encrypt/decrypt in public-key cryptography
• Alice encrypts with Bob’s public encryption key.

• Bob decrypts with his private decryption key.

• To sign and verify in public-key cryptography:
• Alice signs with her private signature key.

• Bob verifies the message with Alice’s public verification key.
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Digital Signatures
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Verify

Verification key

𝑣𝑘

Signature key

𝑠𝑘

True/False
Signature

• If you need encryption, you also need to “do” encryption.

Sign



Non-repudiation

• Digital signatures provide non-repudiation.

• If Bob receives a message with Alice’s digital signature on it, then:
• Alice, and not an impersonator, sent the message (like a MAC).

• The message has not been altered since it was sent (like a MAC).

• Bob can prove these facts to a third party (additional property not satisfied by a MAC).
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Alice sent 𝑀, look:  𝑀 ∥ 𝑆𝑖𝑔𝑛𝑠𝐴
𝑀

She did!!

𝑀 ∥ 𝑆𝑖𝑔𝑛𝑠𝐴
𝑀

(𝑠𝐴, 𝑣𝐴)

Public key: 𝑣𝐴



Faster signatures

• Just like encryption in public-key crypto, signing large messages is slow (MACs are 
faster!).

• We can also “hybridize” signatures to make them faster:
• Alice sends the (unsigned) message, and also a signature on a hash of the message.

• The hash is much smaller than the message, and so it is faster to sign and verify.

• Remember that authenticity and confidentiality are separate; if we want both, we 
have to do both.
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𝑠𝑖𝑔 =  𝑆𝑖𝑔𝑛𝑠𝐴
ℎ 𝑀

(𝑠𝐴, 𝑣𝐴)

𝑀 ∥ 𝑠𝑖𝑔
𝑉𝑒𝑟𝑖𝑓𝑦 𝑠𝑖𝑔, ℎ 𝑀 ?



Alice wants to send a large message 𝑀 to Bob. 
She wants CIA and non-repudiation, and we 
want Bob to verify the integrity/authentication 
first. 

What does she send?

What does Bob do after receiving the message?

Knowledge check II:
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(𝑒𝐴, 𝑑𝐴)

(𝑠𝐴, 𝑣𝐴)

(𝑒𝐵 , 𝑑𝐵)

(𝑠𝐵 , 𝑣𝐵)

Public keys: 𝑒𝐴, 𝑒𝐵, 𝑣𝐴, 𝑣𝐵

𝑉𝑒𝑟𝑖𝑓𝑦𝑘𝑒𝑦 ⋅, 𝑡𝑎𝑔𝑆𝑖𝑔𝑛𝑘𝑒𝑦(⋅)𝑀𝐴𝐶𝑘𝑒𝑦(⋅)

𝐸𝑘𝑒𝑦(⋅) 𝐷𝑘𝑒𝑦(⋅)

Encryption/decryption functions (symmetric or public-key)

Authentication functions:

Assume these two hash before sign/verify



Relationship between key pairs

• Usually, Alice’s (signature, verification) key pair is long-lived, whereas her 
(encryption, decryption) key pair is short-lived.
• Gives forward secrecy (see later).

• When creating a new (encryption, decryption) key pair, Alice uses her signing key 
to sign her new encryption key and Bob Alice’s verification key to verify the 
signature on this new k.
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The key management problem

• How can Alice and Bob be sure they’re talking to each other, and not Mallory?
• By having each other’s verification key!

• Finding this verification key is a very hard problem.

• Some possible solutions for Bob to get Alice’s verification key:
• He can know it personally (manual keying).

• SSH does this.

• He can trust a friend to tell him (web of trust).
• PGP does this.

• He can trust some third party to tell him (CAs).

• TLS/SSL does this.
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Bob? Alice?



Certificate Authorities (CAs)

https://letsencrypt.org

• A CA is a trusted third party who keeps a directory of people’s (and 
organizations’) verification keys.

• Alice generates a (𝑠𝐴, 𝑣𝐴) key pair, and sends the verification key and personal 
information, both signed with Alice’s signature key, to the CA.

• The CA ensures that the personal information and Alice’s signature are correct.

• The CA generates a certificate consisting of Alice’s personal information, as well 
as her verification key. The entire certificate is signed with the CA’s signature key.

• https://letsencrypt.org has changed the game. Most web traffic is now encrypted. 
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𝑠𝐴, 𝑣𝐴

𝑠𝐶𝐴, 𝑣𝐶𝐴

𝑣𝐶𝐴

𝑀 = 𝑣𝐴, personal info , 𝑆𝑖𝑔𝑛𝑠𝐴
(𝑀)

𝑆𝑖𝑔𝑛𝑠𝐶𝐴
(𝑀)

Certificate Authority (CA)

https://letsencrypt.org/


Certificate Authorities (CAs)

• Everyone is assumed to have a copy of the CA’s verification key (𝑣𝐶𝐴), so they can 
verify the signature on the certificate.

• There can be multiple levels of certificate authorities; level 𝑛 CA issues 
certificates for level 𝑛 + 1 CAs. This is the Public-Key Infrastructure (PKI).

• We only need the verification key of the root CA to verify the certificate chain!
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root

Sign the 

verification 

key of the 

next CA



Chain of certificates

• Alice sends Bob the following certificate to prove her identity.

• Bob follows the chain of certificates to validate Alice’s identity.
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I am Alice, here’s the proof:Bob has 𝑣𝐶𝐴1 (trusts CA1)

Subject: CA1
Issuer:  CA1
validity_period: …
public_key: 𝑣𝐶𝐴1

…

CA1 = Root CA

Subject: CA2
Issuer:  CA1
validity_period: …
public_key: 𝑣𝐶𝐴2

…

Subject: Alice
Issuer:  CA2
validity_period: …
public_key: 𝑣𝐴

…

CA2Alice

Signed with 𝑠𝐶𝐴1Signed with 𝑠𝐶𝐴1Signed with 𝑠𝐶𝐴2

Root certificates 

are self-signed!



Putting it all together

• We have all these blocks: now what?

• We put them together to build protocols.

• This is HARD. Just because the pieces work, it does not mean that building 
something with them will. You have to use the pieces correctly.

• Common mistakes include:
• Using the same stream cipher keystream for two messages.

• Assuming encryption also provides integrity.

• Falling for replay attacks (adversary sends a previously-captured packet).

• Falling for reaction attacks (adversary observes someone’s reaction to a packet).

• E.g., did it trigger a decryption error? an integrity error?

• LOTS more!
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Knowledge check III:

Message Decrypt? Conf? Auth? Repudiation? Verify first?

𝐸𝑒𝐴
𝑀 ∥ 𝑆𝑖𝑔𝑛𝑠𝐴

𝑀

𝐸𝐾 𝑀 ∥ 𝐸𝑒𝐵
𝐾

𝐸𝐾 𝑀 ∥ 𝐸𝑒𝐵
𝐾 ∥ 𝑀𝐴𝐶𝐾 𝑀

𝐸𝐾 𝑀 ∥ 𝐾 ∥ 𝑀𝐴𝐶𝐾 𝑀

𝐸𝐾′ 𝑀 ∥ 𝑀𝐴𝐶𝐾′(𝑀)
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(𝑒𝐴, 𝑑𝐴)

(𝑠𝐴, 𝑣𝐴)

(𝑒𝐵 , 𝑑𝐵)

(𝑠𝐵 , 𝑣𝐵)

Public keys: 𝑒𝐴, 𝑒𝐵, 𝑣𝐴, 𝑣𝐵

For each of these messages from Alice to Bob, where the 

data 𝑀 is meant to be secret. For each message, indicate:

1. Can Bob learn/decrypt 𝑀 if the message is not 

modified in transit?

2. Does it provide confidentiality of 𝑀?

3. Does it provide authentication? (then, if yes)

1. does it provide repudiation?

2. can Bob verify authenticity first?

For each case: assume Bob and Eve/Mallory know the 

“format” of the message.

𝐾, 𝐾′ 𝐾′



Knowledge check III:

Message Decrypt? Conf? Auth? Repudiation? Verify first?

𝐸𝑒𝐵
𝑀 ∥ 𝑆𝑖𝑔𝑛𝑠𝐴

𝐸𝑒𝐵
𝑀

𝐸𝑒𝐵
ℎ 𝑀

𝑀 ∥ 𝑆𝑖𝑔𝑛𝑠𝐴
𝑀

𝑀 ∥ 𝐸𝑒𝐵
𝐾 ∥ 𝑀𝐴𝐶𝐾(𝑀)
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(𝑒𝐴, 𝑑𝐴)

(𝑠𝐴, 𝑣𝐴)

(𝑒𝐵 , 𝑑𝐵)

(𝑠𝐵 , 𝑣𝐵)

𝐾, 𝐾′ 𝐾′

Message Decrypt? Conf? Auth? Repudiation? Verify first?

Yes Yes No - -

Yes Yes Yes Yes No

Yes Yes Yes Yes Yes

Yes Yes Yes No Yes

Now you must design a message such that…



Module 2: recap

• Remember Kerckhoff’s principle!

• Confusion and diffusion.

• Ancient crypto: learn why they seem to work well, but how they can be broken 

• Symmetric crypto: same key to encrypt/decrypt, requires shared secret, it is fast, 
secure with 128-bit key
• Stream ciphers: they XOR a keystream with the plaintext, bit by bit, only confusion

• Understand why we add a nonce and why it is not encrypted

• Block ciphers: they split the plaintext in blocks, encrypt each block (confusion and diffusion), 
connect the blocks (understand why ECB is bad, and why CBC and CTR are better).

• Understand the IV, why we don’t encrypt it
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Module 2: recap

• Public-key crypto: different key to encrypt/decrypt, does not require shared 
secret, it is slow, requires larger key sizes than symmetric crypto
• Textbook RSA as an example: understand how it works, the toy example we saw in the 

classroom, and the shortcomings that we saw.

• Hybrid crypto: this is the common approach, understand it!

• Hash functions: understand the 3 properties, which ones are easier to break, 
which ones are better to provide.

• Authentication:
• MACs: symmetric, repudiable

• Signatures: asymmetric, non-repudiable

• The key management problem: we need a “trusted” verification key to at least get 
some authenticity/integrity over the Internet.
• CAs and chain of certificates
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