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Motivation. Obfuscation-Based Location Privacy.

* Location information is sensitive. | want to use location services
e Solution: obfuscation mechanisms f("{}) without disclosing my location

Servi ’ '
ervice [ I’'m at the fake location
provider

?
* We get some privacy. v8v

* We lose some quality of service. x In this work

* There are many ways to evaluate the privacy and We study some flaws in the
y way P y traditional evaluation approach and

quality loss of obfuscation mechanisms.f(ﬂ{}) how to solve them.




System Model
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Traditional Evaluation: Metrics
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Shokri, Reza, et al. "Quantifying location privacy." Security and privacy (sp), 2011 ieee symposium on. |IEEE, 2011.



Optimal Remapping (1]

How to compute the optimal remapping of a mechanism f.

@)

Step 1: Generate a random Step 2: Compute the posterior The generated output is the
location using the mechanism and remap to its “center”. output after the remapping.

[1] Chatzikokolakis, K., Elsalamouny, E., & Palamidessi, C. “Efficient Utility Improvement for Location Privacy.” PETS’17.



Traditional Evaluation: Example and Remapping

Traditional evaluation compares average error

e Theorem: if d,=d,, the optimal
with average loss. Q=Y P

remapping gives an optimal

Q(f’ ﬂ-) — E{dQ (877’)} PAE(f7 7T) — E{dP (87@)} o Zil::li?eISEEeg?C?p?tfmz?E . Q |

05 mechanisms forms a convex
polytope.
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* This means there are many

o

05 1‘ . ) optimal mechanisms... are all of
Q, Euclidean them “equally good”?
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Problems of the Traditional Evaluation

The Coin Mechanism
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Flip a biased coin
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How “good” is this mechanism? 0 2% 9

No privacy! Seems OK... o



Problems of the Traditional Evaluation

The Coin Mechanism e The coin mechanism is

useless in practice...
> ¢ ..yetitisoptimal in terms
of Pyevs. Q).
 How do we identify and

Flip a biased coin

AN

”

Heads! Tails! avoid these “undesirable
_ ’_ mechanisms?
’_ 87 — - e Qur proposal: use
Report real  Report central additional privacy and/or
location location quality loss metrics.

*  We will see two:
How “good” is this mechanism? Jeoin * Conditional Entropy

) Polytope of  Worst-Case Loss
No privacy! Se optimal

— mechanisms
No utility!



Solution 1: Conditional Entropy

* The Conditional Entropy is a privacy metric.* . Real oo ¢ REL
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* Shokri, Reza, et al. "Quantifying location privacy." Security and privacy (sp), 2011 ieee symposium on. |IEEE, 2011. ’



Conditional Entropy Il

* How does it help us?

p & 1p
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Pee(f,m) = E{H (89}
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The conditional entropy is concave!

The coin performs poorly.

The conditional entropy reveals “binary’
mechanisms such as the coin.

)



Conditional Entropy Il

* |s a mechanism that maximizes the / T
conditional entropy “good” enough? p ST

* Consider this adversary posterior: 1

* This is undesirable for the user... yet ° ,
it achieves large conditional entropy. o ms o

* Therefore, we have to design s ey
mechanisms using CE as a T e
complementary metric.




Conditional Entropy IV. Design.

* How to design a mechanism that performs well in terms of AE and CE?

maximize Pcg(f, ) minimize 1($;§)
_ _ _ _ Rate-Distortion:
st QULT) S Quu==P st QA7) < Qo= g
feP feP
e Algorithm: ' Summary:

* Tries to make an exponential posterior (we
call it ExPost).

(1) We copiipute the probability mass function of cachithe output:

B () = Z_;_T(,\’) - plzlx), . yzec 7. (19) )
xeX * For computational reasons, we need to
(2) We updage th lism as follos . .
E.l i [ ), 1. perform approximations.

(3) We normmblize thesrfech apiom.  The more computational power we have, the

o z“—l({zm b cx AT o) closer it is to the optimal mechanism in

We skip this step f:l' the outputsz withfP~(z) = 0 terms Of CE

(4) We repeat these stepsuntil the ehange in the probabilities ° Ite ratlve

p(z|x)lis below s@me thresheld.

* Uses remapping to achieve optimal AE.



Solution 2: Worst-Case Loss

QT (f,m) = max do(8:8)
7 (§)>0
f(®19)>0
* How does it help us?
* Tails 2 Huge loss
* Having a constraint on the WC loss avoids this.

* This constraint makes sense in real applications
where we need a minimum utility (e.g., search
nearby points of interest).

* Implementation: add a WC loss constraint to the
design problem, use truncation, etc.




Multi-Dimensional Notion of Privacy
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f1 * Both mechanisms are * The two-dimensional approach is misleading.
optimal with respect to e Consider privacy as a multi-dimensional
this privacy and quality notion.

loss notions. 14



Evaluation |. Mechanis

MmSs.

e Selection of relevant mechanisms.

Laplacian

O
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We also perform an optimal remapping
after these mechanisms to improve them.

Optimal AE [2]

maximize Pue(f, )

!
s.t. Q(f, ) < Quuax

fePp

Linear program!
Only feasible in
simple scenarios.

[1] Chatzikokolakis, K., Elsalamouny, E., & Palamidessi, C. “Efficient Utility Improvement for Location Privacy.” PETS’17.

[2] Shokri, Reza, et al. "Protecting location privacy: optimal strategy against localization attacks." CCS’12

e Two from our work

Exponential
Posterior (ExPost)

The coin
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Evaluation Il. Continuous Scenario.

Datasets: Gowalla, Brightkite

San Francisco region With Worst-Case Loss = 1.5km Without Worst-Case Loss
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Evaluation Il. Continuous Scenario.

Datasets: Gowalla, Brightkite
San Francisco region
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Evaluation Ill. Discrete Scenario (Semantic)

We consider a
semantic metric.

dp (&) =0
dp(&®) =1
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We evaluate Shokri et. al optimal mechanism
[2], optimized for the semantic metric.
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@ Interior

fepP

—— Opt Shokri - Simplex

— = =Opt Shokri - Interior Point
ExPost

Coin

o 1 15 2
Q, Euclidean

Ppg, Buclidean

[2] Shokri, Reza, et al. "Protecting location privacy: optimal strategy against localization attacks." CCS’12
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Evaluation Ill. Discrete Scenario (Semantic)

 We consider a * We evaluate Shokri et. al optimal mechanism P —
semantic metric. [2], optimized for the semantic metric. L -Eolﬁpé Shokri - Taterior Point -
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[2] Shokri, Reza, et al. "Protecting location privacy: optimal strategy against localization attacks." CCS’12



Conclusions

Many location-privacy
mechanisms are being
proposed

=

This might give “bad”
mechanisms. Design and

» evaluation should be done
considering privacy as a

Most of them are
evaluated following a
two-dimensional

approach .. ) )
PP multidimensional notion.
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