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Why do we like location based apps?



Google Maps
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Foursquare
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Facebook place tips
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Waze
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And, of  course…
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How can you be geolocated?
(without you fully knowing)



IP-based Geolocation
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Source: GeoIPTool



Meta-data based Geolocation
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Landmark recognition Geolocation
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Biometric geolocation

12



Apps-based geolocation
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Credit card usage Geolocation
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Radio-based localization
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Proximity-based localization
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Trilateration vs. triangulation
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Trilateration Triangulation

Source: J.A. del Peral et al. “Survey of Cellular Mobile Radio Localization
Methods: from 1G to 5G”, IEEE Communications Surveys & Tutorials, 2017. 



Signal strength-based triangulation/trilateration
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Source: The Wrongful Convictions Blog
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Source: The Wrongful Convictions Blog

Signal strength-based triangulation/trilateration



Time of  Arrival (ToA) based trilateration
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Source:GISGeography.com
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Source:GISGeography.com

GPS-based trilateration



Multilateration: Time Difference of  Arrival (TDOA)
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Source:[Fujii et al. 2015] 



Fingerprint-based localization
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Source: M. Stella, M. Russo, D. Begusic, “Fingerprinting based localization in 
heterogeneous wireless networks”, , Expert Systems with Applications Journal, 2014 

Access Point #1 Access Point #2

Access Point #3

Signal Strengths



Wardriving geolocation (Wigle)
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Source:Wigle.net



Geolocation malware
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Electrical Network Frequency Geolocation
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And, of  course, combinations of  all the above… 
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Why is it dangerous?
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Buster busted!
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Rogue employees
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6 months in the life of  Malte Spitz (2009-2010)
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Source:http://www.zeit.de/datenschutz/malte-spitz-data-retention 
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Are we concerned about it?



Are people really concerned about location
privacy?

• Survey by Skyhook Wireless (July 2015) of 1,000 
Smartphone app users. 

• 40% hesitate or don’t share location with apps. 

• 20% turned off location for all their apps. 

• Why people don’t share location?
• 50% privacy concerns. 

• 23% don’t see value in location data. 

• 19% say it drains their battery.

• Why people turn off location?
• 63% battery draining.

• 45% privacy.

• 20% avoid advertising. 
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How much is geolocation data worth?
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How much value do we give to location data? 
[Staiano et al. 2014*]
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Many participants opted-out of 
revealing geolocation information. 

Avg. daily value of location info: 3 €

Strong correlation between the amount traveled 
and the value given to location data.

* J. Staiano et al. “Money Walks: A Human-Centric Study 
on the Economics of Personal Mobile Data”. ArXiV 2014



Earn money as you share data

41

• GeoTask

• £1 PayPal cash voucher per 
100 days of location data 
sharing (£0.01/day)

Financial Times in 2013: advertisers are willing 
to pay a mere $0.0005 per person for general 
information such as their age, gender and 
location, or $0.50 per 1,000 people.

http://www.ft.com/cms/s/0/3cb056c6-d343-11e2-b3ff-00144feab7de.html#axzz3sKYPVPiL
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Home address is seventh at US$12.90, with US 
consumers once more pricing it at US$17.90. 
Japanese respondents pegged this information 
at US16.30 while those in Europe priced it at 
US$5.00.

Physical location information is sixth at 
US$16.10. US citizens priced it at US$38.40 while 
consumers in Japan and Europe priced it a paltry 
US$4.80 and US$5.10 respectively.



Pay as you drive
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• Formula can be a function 
of the amount of miles 
driven, or the type of 
driving, age of the driver, 
type of roads used…

• Up to 40% reduction in the 
cost of insurance.
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BIA/Kelsey projects U.S. location-targeted 
mobile ad spending to grow from $9.8 
billion in 2015 to $29.5 billion in 2020.

That’s $90 per person year!!!!
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SAP, Germany, estimates wireless carrier 
revenue from selling mobile-user behavior data 
in $5.5 billion in 2015 and $9.6 billion for 2016. 
Other estimates for 2020 put it at $79 billion. 
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Countermeasures



CV Dazzle

• A project by Brooklyn artist Adam Harvey. 

• Makeup tips to fool facial recognition software. 
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Hyperface

• By the same artist, tries to confound the face detection
software by creating textile fabrics with lots of ‘faces’.
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‘Reflectacles’
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GPS Spoofing

• Deceive a GPS receiver by transmitting fake (but legitimate
looking) GPS signals. 

• Its becoming more of a threat since the advent of cheap SDR 
platforms. 

• Works with

Pokemon-Go too!
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Source: spirent.com



Wi-Fi-based location spoofing

• Create fake WiFi
networks with
extremely cheap
hardware. 

• List of APs MACs is
available at e.g. 
Wigle. Need to 
create more fake
networks than
correct ones at a 
given point. 
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Source: https://www.journaldulapin.com/2013/08/26/dont-trust-geolocation/



IP-based location spoofing
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How about
anonymization/pseudonymization?



Anonymization

Problems: 

• Difficult authentication and personalization.

• Operating system or apps may access location before 
anonymization. 
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Anonymity provider
(local/central)

LocationLocation

Service provider



Pseudonymization

Problems: 

• Operating system or apps may access location data before 
pseudonymization. 

• Deanonymization.
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Location

Service providerPseudonym



Deanonymization based on home location [Hoh, 
Gruteser et al 2006*]

• Data from GPS traces of larger Detroit area (1 min resolution). 

• No data when vehicle parked. 

• K-means algorithm for clustering locations + 2 heuristics:
• Eliminate centroids that don’t have evening visits.

• Eliminate centroids outside residential areas (manually).
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* B. Hoh, M. Gruteser, H. Xiong and A. Alrabady, "Enhancing 
Security and Privacy in Traffic-Monitoring Systems," in IEEE 
Pervasive Computing, 2006] 



Deanonymization based on home location
[Krumm 2008*]

• 2- week GPS data from 172 subjects (avg. 6 sec resolution).

• Use heuristic to single out trips by car. 

• Then use several heuristics: destination closest to 3 a.m. is
home; place where individual spends most time is home; 
center of cluster with most points is home. 

• Use reverse geocoding and white pages to deanonymize. 
Success measured by finding out name of individual. 

• Positive identification rates around 5%. 

• Even noise addition with std=500 m gives around 5% success
when measured by finding out correct address. 
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* J. Krumm, A Survey of Computational Location Privacy, Personal and Ubiquitous Computing, 2008



Mobile trace uniqueness [de Montjoye et al 2013*]

• Study on 15 months of mobility data; 0.5M individuals.

• Dataset with hourly updates and resolution given by cell
carrier antennas, only 4 points suffice to identify 95% of 
individuals. 

• Uniqueness of mobility traces decays as 1/10th power of 
their resolution. 
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*Source: Y. de Montojoye et al. Unique in the Crowd: The privacy bounds of human mobility, Scientific Reports, 2013 



Deanonymization in VANETs [Baldini et al 2017*]

• Even if pseudonyms are used, the RF fingerprint from the
Dedicated Short Range Communications transceiver can be 
used to deanonymize the vehicle.  
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* Source: G. Baldini et al. “An Analysis of the Privacy 
Threat in Vehicular Ad Hoc Networks due to Radio 
Frequency Fingerprinting”, Mobile Information 
Systems, 2017.
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Location Privacy Protection Mechanisms
(LPPMs)



Writing location in incomprehensible language
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Source: CNN



Privacy-preserving queries

Retrieval in Encrypted Domain

Encrypted LB query

Encrypted reply



• Query the server for the closest pharmacy without it
knowing where we are. 

• Example: 

4 pharmacies

• Map gridding. 

• Distance rule:

square is closer to

the pharmacy for

which more points

are closer. 

Private Information Retrieval of  Location [Ghinita
et al., 2008*]
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*G. Ghinita et al. “Private queries in location 

based services: Anonymizers are not
necessary,” in Proc. ACM SIGMOD, Vancouver, BC, 

Canada, 2008



Private Information Retrieval of  Location (2)
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Private Information Retrieval of  Location (3)

• Assign a number to every square in the “cloaking region” (CR).

• Example: CR has 7x10=70 cells.

• Server constructs a 7x10 matrix with 2 bits to indicate color, e.g.
• 00 :

• 01: 

• 10:

• 11:  

• Protocol intends to retrieve the two bits for a certain position 
without the server learning which position that is. 
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Private Information Retrieval of  Location (4)

• Recall: if are integers, then is the remainder of 
the division of     by . 

• Given integer , integer is a quadratic residue (QR) modulo  
iff there exists integer such that

• Modulo a prime number , there are                     QRs and   

QNRs in                               . 

• Modulo a composite number , integer is QR iff it is
QR modulo both and  
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For instance, 5 is QR mod 11 because

but 6 is a Quadratic Non-Residue

(QNR) mod 11.  



Private Information Retrieval of  Location (5)

• Let be the set of integers that are QR modulo both or
QNR modulo both .  

• Quadratic residuosity assumption:
• Given , it is feasible to know whether , but
• Given it is computationally unfeasible to know whether is QR 

mod or QNR mod , if the factorization of      is not known. 

• Then, if the user sends a vector of integers in 

of which one (say ) is QNR mod and all the others QR mod
the server cannot know where is the distinct one!
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Those are QR mod N

If it’s not known, there is

50% chance for QR/QNR.



Private Information Retrieval of  Location (6)

• The user sends . Only (corresponding to 
the column where he is) is QNR. All the rest, QR.    
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Private Information Retrieval of  Location (6)

• The server has a matrix for each output bit-plane. In our
example, for the first bit: 
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Private Information Retrieval of  Location (7)

• For every row of matrix , the server computes

where

• Note that:
• All factors of the form are QR. 

• All factors of the form are QR except for . 

• Then, the result is
• QR if

• QNR if
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Private Information Retrieval of  Location (8)

• There is a certain “dummification” of the queries: the user will
get the answer for ALL cells in the same column. This increases
the bandwidth cost. 

• Complexity increases linearly with the number of bits in the
answer (2, in our example, because there are 4 pharmacies). 

• By using a 2-D reordering method, all points can be put in a 1-D 
vector and then, instead of sending values and getting
answers, it is possible to send values and get one answer.

• There is an inherent granularity in the cells, reminiscent of 
quantization methods, with a corresponding loss of utility. 
Smaller cells increase accuracy, but also communication and 
computation costs. 
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• An homomorphism is a mapping between structures that
preserves operations. 

• For instance, given two sets            and two respective
operations , there is a map such that

• When is an encryption function, the existence of an
homomorphism allows to do operations over encrypted data 
without a prior decryption. 

Homomorphic schemes

72



• Client generates two large primes          which are secret. From
them,                      is made public. 

• Client generates with some additional properties.*    

• Given message encryption is as follows:

where is ‘randomness’ coprime with

• The randomness can be eliminated if are known, because
then is computable, and      

Paillier scheme
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Paillier scheme

• To recover from , write and 
notice that (binomial expansion)

• So                                               and 

• Define the extraction function:

• Then,                                                                    , so if we multiply by
the modular inverse of        we recover the message. 

• Note that
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Paillier scheme

• So, given , decryption: 

• 1) eliminates randomess by computing

• 2) extracts by doing , and 

• 3) recovers by multiplying by
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Paillier homomorphisms

• Given two ciphers

• If we multiply them

• When we decrypt, we get . So the sum of clear
messages is equivalent to the product of their ciphers.                                                  
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Paillier homomorphisms (2)

• Given one cipher

• If we raise it to 

• When we decrypt, we get . So the product of the
message by a constant is equivalent to exponentiation of the
cipher.                                                  
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Computing Euclidean distances with Paillier

• Client wants the server to compute the distance to a given
point without revealing his location. 

• It’s easier to produce 

the squared distance.

• Using Paillier, client

computes:
•

•

•

•

• And sends all to the

server.
78



Computing Euclidean distances with Paillier

• Knowing the coordinates of the desired point server 
does:

• And sends it back to the client. When decrypting, thanks to 
Paillier homomorphisms, the client gets
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Location white lies
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Source: Caro Spark (CC BY-NC-ND)



Perturbation-based LPPMs
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Input
location

Output
pseudolocation

X Z

Source: Motherboards.org



Perturbation-based LPPMs

•

• The mechanism may be deterministic (e.g., quantization) or
stochastic (e.g., noise addition). 

• Function may depend on other contextual (e.g., time) 
or user-tunable (e.g., privacy level) parameters. 

• When the mechanism is stochastic, there is an underlying
probability density function, i.e., 
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Hiding

83



Perturbation: (indepedent) noise addition
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Perturbation: quantization
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Obfuscation
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Spatial Cloaking
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How to commit the perfect murder
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Space-time
Cloaking

89

Time



Dummies
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LPPM Topologies



Centralized LPPMs
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Centralized



Distributed LPPMs
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Distributed



User-centric LPPMs
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User-centric



• In broad terms:

Utility vs. Privacy
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Very nice, but…

• There are two main problems:

How do we measure utility?

How do we measure privacy?
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Quantifying LPPM Performance

97



A (little) bit of  notation
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• Real locations:

• Obfuscated locations:

• Location Privacy-Preserving 
Mechanism (LPPM):

• Sometimes, just:



Mobility Models

• Sporadic: location 
releases are not 
temporally-correlated

• Non-sporadic: temporal 
correlations

• Markov:
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Measuring Utility
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Utility Loss:
Extra walking distance



Measuring Utility
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Utility Loss:
Extra money
Extra waiting time



Measuring Utility
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Real position

Pseudolocation

Utility Loss = Pokemon Loss



Average Quality Loss

• Formally, we define a generic point-to-point distance 
function:

• The most used metric is the Average Quality Loss:

103

User mobility profile LPPM



Measuring Utility: Typical Choices
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Manhattan distance

Euclidean distance



Average Quality Loss (example)
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r



The average loss is great!
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p=0.05

p=0.95

or maybe it’s not…



Worst-Case Quality Loss

• Another utility metric: 
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Fairer 

comparison



• Privacy… against what/who?

• Shannon’s maxim:
“the enemy knows the system”

• How do we quantify privacy?

Quantifying Privacy

108

An adversary

Wants to learn:

or

Mobility profile:



Optimal Adversary’s Attack.
Computing the Posterior.
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Optimal Adversary’s Attack:
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If the adversary wants to get as 
close as possible to the user on 
average:

If the adversary just cares about 
getting the real location right:



… more general:
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Example of  Semantic Distance:
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It’s as if the adversary chose her 
estimation in the “tag domain”, 
instead of the location domain.



Ok, but How do We Measure Privacy?
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• Privacy is related to how good 
the adversary’s estimation is.

• Average Adversary Error 
(correctness)

Typically, 
against the 

optimal attack

Shokri, Reza, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre Hubaux. "Quantifying location 
privacy." IEEE S&P, 2011.



Average Adversary Error (example)
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The Average Adversary Error is great (?)

115

The avg. error does not 
capture this “adversary 

uncertainty”

Is this one really much 
better for the user?

Here the adversary has 
more uncertainty!



Conditional Entropy
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• Given the posterior:

• Uncertainty:

• Conditional Entropy (Average Uncertainty):



Conditional Entropy (example)
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The average adversary error 
and the conditional entropy 
are complementary metrics!!!



• The average error and the conditional entropy assume an 
adversary with a certain knowledge:

Issues of  Adversary-Tailored Metrics
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A Possible Solution… Differential Privacy

• Adversary-agnostic guarantee.

• Used in database privacy and other fields.

• An LPPM “f” guarantees

if the following holds:
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Differential Privacy
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Privacy parameter:

Looser bound  Less privacy Tighter bound More privacy



Differential Privacy

• An LPPM “f” guarantees            if the following holds:
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The Solution is… Geo-Indistinguishability!

• Extension of DP to Location Privacy:
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Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, CCS’13. Geo-indistinguishability: Differential 
privacy for location-based systems.

Intuition:
• If the two locations are close:
• The adversary will find it hard to distinguish them:

• If the two locations are far:
• The adversary will find it easy to distinguish them:



Choosing the Privacy Level

• How do we pick     ?

• Typical approach:
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Privacy
radius

Privacy
level

• How do we choose      ?
• From log(1.4) to log(10).
• Normally, log(2).

• Example:

• Inside the region, we get:

Hard to interpret



• If                                      the 
adversary decides:

• Prob. of error:

Geo-Indistinguishability as an Adversary Error

• Decision adversary:

gives geo-indistinguishability if and only if,

Simon Oya, Carmela Troncoso, and Fernando Pérez-González. "Is Geo-
Indistinguishability What You Are Looking for?.“ WPES’17



Geo-Indistinguishability as an Adversary Error
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The price we pay is too high 
for the privacy we get!!

Bad privacy-utility trade-off

Reported location 
here on average

Reported location 95% 
of the time is here

Geo-Indistinguishability in Numbers

• Most used geo-indistinguishability 
LPPM: Laplacian noise:

• Example: we want                   for 
locations inside a region     .
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Quantifying LPPM Performance (Summary)

Pros Cons

Average Quality 
Loss

• Intuitive
• Versatile

• Average only

Average Adv. Error • Intuitive
• Versatile

• Average only
• Adversary-dependent

Conditional 
Entropy

• Intuitive
• Probabilistic (non-geographic) 

• Average notion
• Adversary-dependent

Geo-
indistinguishability

• Adversary-agnostic • Not intuitive
• Numerical issues in the 

user-centric approach
• Degrades with further 

location reports
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Conclusions

• There is no universal notion of privacy.

• Privacy is a multi-dimensional notion.

• Privacy and utility are subjective and application-dependent.
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LPPM Design and Evaluation

129



Location Privacy-Preserving Mechanism (LPPM) 
Design

130

Privacy and quality 
loss requirements

LPPM

Application requirements 

Mobility model



Traditional Approach:
Average Adv. Error vs Average Loss

131

Privacy and quality 
loss requirements

Mobility model & Application reqs.

Theorem: if the mobility model is sporadic, 
we can design                              as                    
and we do not lose privacy.

…

…

Adds up to 1

Probability that….



Traditional Approach:
Average Adv. Error vs Average Loss
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It depends on…
• User mobility
• Terrain
• Application
• Privacy and 

utility metrics
• …

If                  , then

Optimal Performance

133

• What does privacy vs. utility look like?
• Toy example:

Different users



Optimal Remapping
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Theorem: optimal remappings do not 
reduce (any) privacy metric.

• Average Error, Conditional Entropy, Geo-Ind.

Chatzikokolakis, Konstantinos, Ehab Elsalamouny, and Catuscia Palamidessi. "Efficient utility improvement for 
location privacy." PoPETS’17.



Proof:

• The attack that “does nothing”, 

gives                              .

• Therefore, against an optimal attack,

• What is the optimal attack against these 
LPPMs?

• We have reached the upper bound, and 
thus optimal remapping LPPMs are 
optimal in terms of privacy:

Optimal Remapping LPPMs are Optimal!! (if             )
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=

“do-nothing”



Traditional Approach with the Markov Model
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Privacy and quality 
loss requirements

Mobility model & Application reqs.

• We have to take all the previous 
releases into account:

• We can find an optimal mechanism 
by solving a linear program

• We can use remapping techniques 
to find optimal mechanisms in the 
Markov model if                   .

THE COMPUTATIONAL
COST IS PROHIBITIVE



There are Infinite Optimal Mechanisms

• Applying the optimal remapping to any               gives an 
optimal mechanism.

• Solving the linear program with different algorithms gives us 
different LPPMs.

• Optimal LPPMs are in a polytope:
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• Are all optimal LPPMs as “good”?
• Let’s study one:

Coin mechanism

Simon Oya, Carmela Troncoso, and Fernando Pérez-González. "Back to the drawing board: Revisiting the design 
of optimal location privacy-preserving mechanisms." CCS’17.



The Coin Mechanism (also called Location Hiding)
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Flip a biased coin

Heads! Tails!

Real
location

“Center”
of the map

= =
Report real

location

Report central
location

p 1-p

No privacy! Seems OK…

How “good” is this mechanism?



The Coin Mechanism (also called Location Hiding)
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Flip a biased coin

Heads! Tails!

Real
location

“Center”
of the map= =

Report real
location

Report central
location

p 1-p

No privacy! Seems OK…

No utility!

How “good” is this mechanism?



No utility!No privacy!

The Coin Mechanism

• You can use this right now 
on your phone!!

• Whenever you want to use a 
location-based service…
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Flip a biased coin

Heads! Tails!

Use it!!!
Do not 
use it!

p 1-p

• This mechanism is optimal 
in terms of                    .

• Yet it does not seem very 
“desirable”.

• Where’s the problem?



The Coin Mechanism and its Conditional Entropy

141

• The Coin is very “binary”. The Conditional Entropy reveals this issue.

Coin

Optimal CEHeads!

=
Report real

location

Tails!

=
Report central

location

p 1-p

If p=1: If p=0:

• The Coin performs poorly in 
terms of Conditional Entropy!



Recap

• Careful: they might be 
“undesirable”

• Use other metrics for this:
• Conditional Entropy

• Worst-case Quality Loss

• …

• Next:
• LPPM design to maximize the 

Conditional Entropy.

• LPPM design to maximize 
Geo-indistinguishability
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• Optimal LPPMs in terms of
:

• Solve a linear program 
(expensive)

• Optimal remapping (only if             
)

• There are infinite optimal 
LPPMs:



Maximizing the Conditional Entropy

143

Indep. of
LPPM
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WAIT!!! 
This is the missing link with the

strategies I covered in the first part ! 



Sounds known to me…
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Real
location

Obfuscated
location

LPPM

Source
signal

Codeword Received
signal

Source 

encoder

Source 

decoder

Goal: minimize                
subject to a quality loss 
constraint                  .

Goal: design codebook and mapping to minimize
with a distortion (reconstruction) constraint

. 

This is 
source 
coding!



Rate-Distortion Function
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Source
signal

Codeword Received
signal

Source 

encoder

Source 

decoder

• Quantifies the rate, i.e., how many bits are 
needed (on average) to transmit a symbol, 
so that the source signal can be 
reconstructed at reception without 
exceeding a distortion D.

• It can be computed analytically in some 
cases.

• It can be computed empirically using 
Blahut-Arimoto algorithm.

Achievable rates

Optimal rate



Practical Source Coding

• Standard approach: vector quantization of        . The
become the centroids. Target is to reduce        (e.g. sphere
covering) to minimize bandwidth.

• In location privacy, this corresponds to exactly this
perturbation scheme:    
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Source
signal

Codeword Received
signal

Source 

encoder

Source 

decoder



• But vector quantization approaches the Rate-Distortion
function for large dimensionality, and we’re in 2-D!!

• We can improve a bit by adding extra dimensions, (e.g., time 
slicing, for extra delay) or jointly quantizing several users
(e.g. space cloaking), but still… 
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Rate-Distortion (RD) of  an i.i.d. Gaussian Source

• The “test-channel” is used classically to find the RD for an
i.i.d. Gaussian source.

• This is used to show that, for a Gaussian source, it is optimal
to use i.i.d. Gaussian codewords and this yields i.i.d. 
Gaussian “quantization” noise. We can always revert the
scheme:
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• The “test channel” is a theoretical construction; we see that adding 
noise would work, but this would produce i.i.d. Gaussian codewords, 
which are not practical as a source code. 

• But in location privacy, we do not care about rate, but about privacy.

• So for us adding noise is OK!

(recall we already proposed this)
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• The test channel would suggest adding independent noise 
in the Gaussian case, right?

• Not so fast! In the test channel, the noise      is independent 
of      but not of     !!!

• In fact, the RD is achieved when the noise has the form: 

with and        i.i.d. noise independent of      and 
with variance
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• This matches what happens with optimal conditional 
entropy LPPMs if the prior is Gaussian:
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• Gaussian prior.
• We compute the 

optimal           LPPM. 

• This is 
• It’s not                  !!
• The noise in dependent on    !!

• The marginal noise:

• It’s actually Gaussian!!
• This matches the “test channel”.
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Sorry! Where were we?



Maximizing the Conditional Entropy
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We could gather
locations and 

then perform a 
quantization.

We could also add (dependent) 
noise to every location… which 

is more convenient!!

Blahut-Arimoto algorithm computes the encoding in source 

coding. We can use to compute the LPPM in location privacy!



1

Blahut-Arimoto Algorithm

• The exponential distribution maximizes the entropy for a given 
distortion constraint.

• Blahut-Arimoto: iterative algorithm that tries to make an exponential 
posterior              .
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2

Intuition:

b affects privacy 
and quality loss

Normalization



Exponential Posterior LPPM
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Blahut-
Arimoto

Optimal in discrete Z! Not optimal in cont. Z
(but close)!

Simon Oya, Carmela Troncoso, and Fernando Pérez-González. "Back to the drawing board: Revisiting the design 
of optimal location privacy-preserving mechanisms." CCS’17.



Designing Geo-Indistinguishability LPPMs

• Recap:

• Most LPPMs do not 
guarantee any level of 
geo-ind (i.e.,                 ).

• E.g., finite mechanisms.
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Designing Geo-Indistinguishability LPPMs

• Recap:

• Most LPPMs do not 
guarantee any level of 
geo-ind (i.e.,                 ).

• E.g., finite mechanisms.

• We are going to see 
some geo-ind LPPMs
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Laplacian LPPM

• Continuous map:

• The Laplacian LPPM provides b-geo-indistinguishability.
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Exponential LPPM

• Discrete set of locations:

• This mechanism guarantees 2b-geo-indistinguishability.
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What about ExPost?

• Blahut-Arimoto iteration was:

• Exponential LPPM:

• If             satisfies the triangle inequality, ExPost
provides 2b-geo-indistinguishability.
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1 2



Laplacian vs. Exponential vs. ExPost
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Laplace Exponential ExPost Laplace

State-of-the-art 
in geo-ind.

Gowalla dataset



Optimal Geo-Indistinguishability

• We can minimize     subject to a quality loss constraint.

• In this case, it is easier to minimize the quality loss subject 
to an     constraint.

• There are more efficient methods, but still expensive…
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How Good is Optimal Geo-Ind?
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N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. "Optimal geo-indistinguishable mechanisms for location privacy." CCS’14.

T-drive dataset Geolife dataset

Optimal Geo-Indistinguishability
Laplace LPPM (no remapping)



LPPM Design: Summary
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• Linear Program:
 Performance:
 Scaling:

• Any LPPM + Remapping (RM):
 Performance:           
If                   :
If                   :
 Scaling:

• ExPost (Blahut-Arimoto):
 Performance:
 Scaling:

• Laplace/Gaussian/Circular + 
RM:

 Performance:
 Scaling:

• “Binary mechanisms”:
 Performance:
 Scaling:                     (        )

• Laplace + RM:
 Performance:
 Scaling:

• Exponential/ExPost + RM:
 Performance:
 Scaling:

• Optimal Geo-Ind:
 Performance:
 Scaling:

?



Practical Considerations for LPPM 
Design
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• Well, not everything… just our first assumption.

Everything was a lie!
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Do we know the real 
mobility model?

Can we look 
into the 
future?

We do not know 
the real mobility 

model

I know 
it!Yes No



What can we do?
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We do not know 
the real mobility 

model

Can we use 
something that 

is similar?

Train a 
mobility 
model

Past user 
mobility traces

Traces from 
other users

Other location 
information

Design the 
LPPM



Wait, but the user knows her “mobility” on the fly!
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Some 
algorithm

Problem:

We need to handle          values to compute 
the optimal attack and measure privacy…

Optimal attack:



LPPM Design and Evaluation Framework
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Training
Set

Testing
Set

Theoretical
LPPM
Design

Empirical 
LPPM

Evaluation

Performance
requirements

Pe
rf

o
rm

an
ce

m
et

ri
cs

Design Evaluation

Train
Mobility
Model



How Does This Affect LPPM Performance?

• San Francisco Region:
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• Gowalla dataset.
• 16 users for evaluation

• All the others as training data

• Sporadic mobility assumption.

Laplacian ExPost

Coin



User’s Mobility Profile
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Very spread, not close to avg. Closer to avg. Concentrated in two regions.



Average Error Privacy (Gowalla)
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• Performance worsens in evaluation.
• Users: different performance in the 

evaluation!!
• LPPMs: different performance in the 

evaluation!!



Different Performance Among Users
(Average Error Privacy)
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Conditional Entropy (Gowalla)
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• Performance worsens in evaluation (but 
not much, due to concavity of entropy).

• Users: different performance in the 
evaluation!!

• LPPMs: different performance in the 
evaluation!!



Different Performance Among Users
(Conditional Entropy)
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Geo-Indistinguishability
(as an Adversary Error)
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Practical Considerations (Conclusions)

• In practice, we do not perfectly know the user’s mobility 
model.

• LPPMs designed with training data are tailored to that data, 
and thus perform worse if the evaluation data is different.

• Designing LPPMs to protect users in practice is very 
challenging.
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Challenges Ahead
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• We have explained the basics of user-centric perturbation-
based location privacy.

• In practice, guaranteeing location privacy is (even) a more 
complex issue.
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How to measure 
privacy and utility

How to design 
LPPMs according to 

those metrics

Practical 
considerations 

when designing 
those LPPMs



Location Guard

• Extension for Google Chrome/Firefox.

• You can choose from privacy levels and add Laplacian noise.

• You can also choose a fixed location (this is actually what 
most people use it for).
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Academic Implementations

• Location Mask, developed by Miguel Gallego Martín 
(University of Vigo).

• Implementation of the ExPost LPPM.
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B



The “Privacy Paradox”

• Consumer’s choice to use mobile technologies is primarily 
driven by considerations of popularity, usability and the 
price of a given technology despite the potential risk of data 
misuse. 

• But research shows that users are concerned about privacy
and misuses of their data. 
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Eurostat: 71% of Europeans agree that “providing personal information is

an increasing part of modern life”. 

57% disagree with “providing personal information

is not a big issue for them”. 

http://ec.europa.eu/commfrontoffice/publicopinion/
archives/ebs/ebs_431_en.pdf



35 Theories for the “Privacy Paradox” [S. Barth et al 2017*]
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S. Barth et al. “The privacy paradox : Investigating discrepancies between expressed 
privacy concerns and actual online behavior - A systematic literature review”, 
Telematics and Informatics, 2017. 



Good remarks (in our view)

• People are biased when making choices about privacy vs. 
utility.

• There are no privacy assessment measures that can be used
to make a rational decision.

• People underestimate their own risk but not others’ 
(optimistic bias stance). 

• People seek immediate gratification (including habit) and 
are concerned about being excluded from the group.  

• Resignation (users perceive they have little power). 

• Asymmetric and incomplete information. 
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Asymmetric Information

• In the LBS market, users cannot properly evaluate the amount of 
privacy they lose. 

• This is an instance of “asymmetric information”. Users cannot
select the best product because there are hidden costs in terms
of privacy. 

• Example: Google doesn’t tell you the whole truth with “Location
History”. 

• Customers may not even consider using other privacy preserving
alternatives because of such asymmetry. 

• This “adverse selection” hampers innovation. 

• This is why a solution is privacy enforcement by law. 

186



Incomplete Information

• The user does not know what is the utility from the LBS 
provider. 

• Example: Facebook tells you it’s for your own good. 
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“To create personalized products that are unique and relevant to 

you, we use your connections, preferences, interests and activities 

based on the data we collect and learn from you and others”. 



Privacy as a Zero-Sum Game
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P
ri

va
cy

Quality Loss

Achievable region
Optimal Mechanism

P=Q

Achievable region
Optimal Adversary

Privacy+Quality=Constant

Utility for the 
adversary is 

proportional to 
Quality of user



Can the user do anything else to increase privacy?

• So far, the quality of the response that we get from the 
Location Based Service is the resource that we trade in for 
privacy.
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Average Quality Loss (compared to 
the quality of a unprotected 

location release)

• However, there are other 
resources we could trade 
in for privacy:

• Computational Complexity

• Bandwidth

• Delay



Computational Complexity for Privacy

• We saw examples of this at the beginning.

• But the service provider gets nothing for her collaboration

• There’s a notion of “provider utility” behind this, that we 
have not taken into account!
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Retrieval in the Encrypted Domain

Encrypted query

Encrypted reply

P
ri

va
cy

Quality Loss

Computational 
Effort

I gave it for free 
because I wanted

your data!



Can we find a midpoint?

• Maybe we can let the server get some information (some 
“server utility”), but also hide some.

• Also, we can rely on both computational complexity and 
perturbation to achieve privacy!

• Example:

192

C
o

m
p

u
ta

ti
o

n
al

 c
o

m
p

le
xi

ty

A
ve

ra
ge

 A
d

v.
 E

rr
o

r

• This is an interesting 
future line of work.



Bandwidth as a Source of  Privacy

193

Utility Loss:
• Extra bandwidth
• Walking distance is 

optimal



Bandwidth as a Source of  Privacy

• Using more bandwidth (dummy locations) decreases quality 
of service (or increases privacy).
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P
ri

va
cy

Quality Loss



Delay as a Source of  Privacy

• If several users cooperate and “mix” their location reports:
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MIX



Example of  Performance (from Mix literature)

• Average Adversary Error (MSE) of estimating the mobility 
profile of a user (not an individual location).
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A
d

ve
rs

ar
y 

Er
ro

r

Average Delay (hours)

Different delay 
strategies!



Other Issues of  LPPMs in Practice:
More Realistic Mobility Models

• We have seen sporadic mobility models.

• Also, a bit of Markov mobility models.

• In practice, users normally have routines.
• Leave home for work at the same time.

• Stay the same time at work.

• Leave work at the same time.

• Go to the gym at the same time.

• …

• This induces correlations between the user’s 
locations, that can be exploited by an 
adversary.
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More Realistic Mobility Models
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Monday, 4pm

Monday, 5pm

Tuesday, 3:20pm

Tuesday, 8pm

I average them, 
and get the real 

location!!

Defending against this is a difficult challenge. User mobility 
behaviors are very complex.



How to Generate Dummy Traces? [Chow, Golle 2009]
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• Take polyline from the

route offered by Google.

• Generate additional

points between existing.

• Points are meant to

be equally spaced in time.

• Add random stops. 

• Add noise to each vertex

to simulate GPS.

• Sample the available vertices and report them.  



So…we need more research!
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This new spatial cloaking
mechanism is a game

changer!


