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Motivation: Obfuscation-based Location Privacy

• Location information is sensitive.

• Location Privacy-Protection Mechanisms (LPPMs)
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Service
provider Here you go!

I’m at the fake location
, closest       ?

I want to use location services 
without disclosing my location

• User gets some privacy.
• User loses some 

quality of service.



Privacy

Quality Loss

LPPM Design Notions: Metrics and Mobility Models
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•Example: Average Loss

•Example: Average Adversary Error

Euclidean, Hamming, semantic, …

Adversary’s
estimation of the

real location

Euclidean, Hamming, semantic, …

Real
location

Obfuscated
location

Estimated
location

Shokri, Reza, et al. "Quantifying location privacy." Security and privacy (sp), 2011 ieee symposium on. IEEE, 2011.



LPPM Design Notions: Metrics and Mobility Models
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Sporadic

• Model how the user moves in 
the map.

• Typical computational 
constraints: discrete models.

• Independent location 
reports.

• Adequate for 
infrequent usage (e.g., 
checking the weather)

Non-Sporadic
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Sporadic

• Model how the user moves in 
the map.

• Typical computational 
constraints: discrete models.

• Independent location 
reports.

• Adequate for 
infrequent usage (e.g., 
checking the weather)

• Dependent locations
• Adequate for 

continuous usage (e.g., 
live location sharing)

Markov



Mobility Model

LPPM Design and Evaluation Framework
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LPPM
Design

LPPM
Evaluation

Quality Loss and 
Privacy Requirements
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Adversary

Knows testing data 
statistics and LPPM
(strong adversary)

Other 
Preferences
(exponential, 

Gaussian, other 
shapes…)



LPPM Design and Evaluation Framework
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LPPM Evaluation
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Adversary

Knows statistics 
about testing data

Mobility Model

Previous Works:
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Hardwired Hardwired LPPM



Testing set

Adversary

Knows statistics 
about testing data

Mobility Model

Previous Works:
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Training set

Hardwired

Hardwired LPPM



• In these frameworks, it makes sense to hardwire the 
training set into the LPPM:

• How do these LPPMs fare when we split training/testing 
data?
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Experiment: let’s see what would happen “in practice”

• Data gathering:
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For sporadic 
mobility:

Gowalla
Brightkite

Non-sporadic 
mobility:

TaxiCab
(dense cab location 
reports for 30 days)

Scarce Rich

Scarce Rich

Testing setTraining set

Pre-processing

Pre-processing



Performance Results (sporadic case)
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Datasets with 
sporadic reports 

(shuffled)
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Privacy loss in 
practice

Different training 
sets give different 

performance
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Exponential Mechanism Location Hiding

Different 
mechanisms 

perform differently 
in practice



Performance Results (non-sporadic case)
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TaxiCab
Dataset with 

continuous reports
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Exponential Mechanism Location Hiding Mechanism



Performance Results (non-sporadic case)
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TaxiCab
Dataset with 

continuous reports

Sc
ar

ce
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h

Exponential Mechanism Location Hiding Mechanism

Same (optimal) performance in theory…



Performance Results (non-sporadic case)
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TaxiCab
Dataset with 

continuous reports

Sc
ar

ce
R
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h

Exponential Mechanism Location Hiding Mechanism

Same (optimal) performance in theory…

but different performance in practice



Let’s think about it…

• Hardwired LPPMs will be 
useful when user behavior 
(in practice) is captured by 
the training data.

• They will NOT perform 
well when:
• Insufficient data
• Deprecated data
• Non-representative data
• Unexpected change in user 

behavior
• …
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• What can we do in all of these 
cases?
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Writing in the blank-slate using the reported locations
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Mobility 
Model

[In the paper]
MLE of the mobility profile 

in sporadic models

Profile Estimation-Based 
(PEB) LPPMs

Iterative algorithm

Result: an LPPM that can be written as:

Pr(   )

• We can evaluate them against a 
worst-case adversary.

• Will do better in sporadic settings.



Experimental Results. Sporadic Case
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Datasets with 
sporadic reports 

(shuffled)
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Privacy
gain

Privacy
gain!!



Experimental Results. Non-Sporadic Case.
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• Hardwired Markov-based 
LPPMs encode road 
restrictions.

• Sporadic PEB-LPPMs do not!

• This explains their 
difference in performance.
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• However, current Markov 
LPPMs do not account for 
differences in train/test.

LPPM
Design

Training 
set

Mobility Model

Initialization



Sumary
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To build PETs with strong privacy guarantees in practice, we 
have to embrace that training data cannot always capture 

user behavior.

Testing setTraining set

• Current proposals hardwire
training data into the LPPMs.

• We propose blank-slate models 
that improve the performance in 
sporadic scenarios.

Future Work

• Blank-slate Markov models

• Evaluate LPPMs with more data sets

• Develop other techniques to improve 
performance in practice…

Thank you!!      simonoya@gts.uvigo.es


