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Estratéxica Consolidada de Galicia accreditation 2016-2019; by RedTemática
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Abstract

Electronic services have become an indispensable part of society. Billions of
users rely on these services every day to communicate with friends, meet new
people, buy products, and keep track of their activities. Electronic services pro-
vide many comforts to society, but also pose new threats to the privacy of their
users. This is due to the fact that users of electronic services send their sensi-
tive information over a communication channel (typically, the Internet), and this
information can many times be observed by an unwanted party.

Even though encryption can protect the content of communications against
unwanted observers, there are other privacy problems that encryption does not
solve. In this thesis, we study two of these problems. First, we tackle the problem
of meta-data leakage against a passive eavesdropper. Meta-data is information
related to a communication other than the content of the communication itself,
such as who the communicating parties are, how often they communicate, or
where they are located. Meta-data is usually sensitive, so it is important that
users hide it from eavesdroppers. In the first part of this thesis, we study a
particular solution to meta-data leakage: mix-based anonymous communication
systems. We analyze these systems, and find out how to optimally configure their
parameters so as to maximize the users’ privacy.

In the second part of the thesis, we study how to protect users against an
adversarial service provider. We consider the particular case of Location-Based
Services (LBS), where users want to obtain some service that depends on their
real location (e.g., finding nearby points of interest), but do not want to share
this location with the service provider. We study obfuscation-based location
privacy mechanisms, that allow users to obtain some utility from the LBS without
revealing their actual location. We find weaknesses in the approach that previous
works follow to design and evaluate location privacy-preserving mechanisms, and
propose solutions to mend these issues and improve current designs.

Throughout the thesis we follow a statistical approach to improve the privacy
of electronic services: we model both the system operation and the users’ be-
havior, and leverage these models to optimize the privacy of the systems. This
approach provides theoretical guarantees that our results will be universally valid

i



ii

as long as the models that we assume for user behavior hold. Also, our methodol-
ogy can be easily adapted to other privacy problems, and we hope it will inspire
future research in this direction.



Acknowledgments

I started my PhD almost seven years ago, back in November 2012, and I have
come a long way since then. I want to take this opportunity to thank the many
people that have inspired me to learn, overcome challenges that I encountered,
and thrive as a researcher.

I want to begin by thanking my supervisors, Carmela Troncoso and Fernando
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Notation

Throughout this thesis, we use the following notation unless otherwise stated.
Upper case characters denote scalar random variables, and lower case characters
denote their realizations (e.g., x is a realization of the random variable X). Vec-
tors and matrices are denoted by lower-case and upper-case boldface characters,
respectively; whether the values inside them are random variables or realizations
will be clear from the context. Sets are denoted using calligraphic letters (e.g.,
A), and the real plane is denoted by R2.

We use the following notation for matrix and vector operations. Matrix AT

is the transpose of A (same for vectors). We use Tr {A} to denote the trace of
matrix A. Matrix diag {a} is a diagonal matrix whose main diagonal contains
the elements of the vector a. Matrix IN×N is the N × N identity matrix, 1N×N
is the N ×N ones matrix and 1ρ is the ρ× 1 vector of ones. Likewise, 1N is the
N × 1 column vector of ones. We use (A)m,n to refer to the m,n-th element of
matrix A. The Frobenius norm of matrix A is denoted by ||A||. More precisely,
if A is an M ×N matrix and am,n = (A)m,n, then the Frobenius norm is defined
as

||A|| .=

√√√√ M∑
m=1

N∑
n=1

a2m,n . (1)

The operator ◦ is the entrywise or Hadamard product of matrices, i.e., the ele-
ments of matrix C = A ◦B are

(C)m,n = (A)m,n · (B)m,n (2)

We use E {X} to denote the mathematical expectation of the random variable
X, and E {X|Y } to denote the conditional expectation of X given Y . The same
applies to vectors and matrices. The entropy of a random varible X is denoted
by H(x), and the conditional entropy of X given Y is written as H(x|y).

Finally, we use the circumflex accent to denote an adversary’s estimation (e.g.,
Â is the adversary’s estimation of A, and the same applies to vectors and scalar
values).
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Chapter 1

Introduction

In the last decades, we have witnessed the surge of electronic services. These
services, that rely on communication technologies such as the Internet or mobile
phone networks, include applications such as e-mail, instant messaging, online
social networks, and location-based services. Today, electronic services are in-
tegrated into people’s daily activities and it is hard to envision society without
the comfort that these services provide. Electronic services require that users
send their data over a communication channel, either to interact with other users
or with a service provider. This is a privacy problem, since users’ transmitted
information, as well as their usage patterns (when, where, and how frequently
they use a service), can sometimes be observed by unwanted parties.

Take for example the case of an individual, Alice, who uses her phone to
browse a website with information about a particular rare disease. She sends a
request to the website provider, and gets the webpage with the information she
desires in response. During this process, the website provider learns that Alice
is interested on learning about that particular rare disease, and she might accept
this information disclosure as part of the deal. However, it may be possible
that a third party also learns this information: this could be an eavesdropper
monitoring the traffic Alice sends and receives (e.g., a wiretapper, or a curious
user sniffing Alice wireless connection), but also Alice’s Internet service provider.
The fact that Alice wants to know more about a rare disease is very sensitive
information, and if this information is learned by another party this constitutes a
privacy violation. Note that this privacy issue is not particular of web browsing:
it is possible to infer sensitive information about a user by analyzing her usage of
different electronic services. For example, user check-ins in particular locations
can leak the user’s sexual orientation, or political and religious beliefs. Protecting
this data leakage is a fundamental challenge towards achieving privacy-preserving
electronic services.

A solution to protect communication data from observers is to encrypt the
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data, i.e., use mathematical techniques to hide the information inside the mes-
sages that the user transmits to other parties, so that only the intended recipient
can read them. This way, an eavesdropper of the communication that manages
to capture messages exchanged between two users cannot read their content, and
the users enjoy communication confidentiality. However, encryption alone does
not solve the privacy issues related to electronic services. First, encryption pro-
tects the content of the message against unintended recipients, but there is other
data, known as meta-data, that encryption does not hide. This meta-data is
the information that is part of a communication other than the content of the
communication itself, i.e., who communicates with whom, the timing patterns of
the communicating parties, their location, the frequency with which they com-
municate, etc. This information is in many cases highly sensitive, so protecting it
from observers is crucial towards achieving privacy-preserving communications.
Second, sometimes the user wishes to obtain a service from a particular provider
(e.g., download a web page from a web provider) but does not want the service
provider itself to know the information being requested. In this case, if the user
encryps her messages against the provider, she gets no utility back. Thus, she
has to rely on other techniques to reduce the information leakage against this
provider.

In this thesis, we study one particular example for each of these scenarios
where encryption alone does not protect the privacy of the users of electronic ser-
vices. In the case meta-data leakage protection, we study mix-based anonymous
communication systems that hide the identity of communicating parties. In the
case of protection against an adversarial service provider, we study obfuscation-
based techniques that provide privacy in Location Based Services (LBS). In both
cases, our goal is to optimize the design of these systems to improve the privacy
they provide to their users.

As opposed to previous works that tackle these privacy problems using a
heuristic or a machine learning approach, in this thesis we follow a statistical
approach. First, we characterize the system model and the behavior of the users
of electronic services in terms of probabilities. Then, based on these models,
we study how to improve the privacy of the users. A particular advantage of
this approach is that our results (i.e., our improvements to privacy-preserving
systems) have a consistency supported by theoretical guarantees. This means
that, as long as the users of the system follow the theoretical behavioral models
that we consider, we know that our designs are optimal (or highly effective).
In many cases, heuristic or machine learning approaches cannot provide such
guarantees.

We note that the privacy goals and implementations of mix-based anonymous
communication systems and obfuscation-based location privacy mechanisms are
very different. However, throughout the thesis we will see that the mathemat-
ical models of these two privacy-preserving technologies are surprisingly close.



Chapter 1. Introduction 3

Their main difference lies in which resources users sacrifice for privacy: mix-based
anonymous communication systems generally trade in communication delay for
privacy, while obfuscation-based location privacy mechanisms sacrifice quality of
service.

We explain the two privacy problems we consider, and our contributions in
each scenario, in the sections below.

1.1. Meta-Data Protection Against a Passive

Eavesdropper

The first scenario that we study in this thesis is meta-data leakage protec-
tion against a passive eavesdropper. Consider the example that we mentioned
above, where Alice is browsing a website with information about a rare disease.
Assume that there is a passive eavesdropper, i.e., a party that observes the mes-
sages exchanged between Alice and the web server, but does not interfere in the
communications (e.g., Alice’s ISP). Even if Alice and the web server encrypt the
messages they exchange, the eavesdropper can see meta-data such as Alice’s and
the web server IP addresses. From this information alone, the eavesdropper can
infer that Alice is communicating with a web server that hosts a webpage with
information about a rare disease, thus compromising Alice’s privacy.

A solution to protect meta-data from observers is to use anonymous commu-
nication systems [1, 2]. These systems are built on top of the Internet protocols,
and rely on combining re-routing and encryption techniques to hide communica-
tion meta-data. Re-routing consists in changing the normal path that a message
would follow through the network, i.e., the set of nodes that relay the packet to
its destination. This is necessary, since otherwise it would be easy for an adver-
sary to track packets and identify who communicates with whom. On the other
hand, encryption techniques can be used to change the appearance of messages
at each relay, which prevents an adversary from tracking a message based on its
appearance.

In terms of latency, we can broadly classify anonymous communication sys-
tems as high or low-latency. High-latency systems purposely delay the messages
they relay to break timing patterns in the communications that could otherwise
reveal that two users are communicating. This is the case of Chaum’s mix [3] and
other mix-based proposals [4–6]. These designs are appropriate for applications
that do not require real-time communication, such as email. On the contrary,
low-latency systems are designed for applications that only tolerate small delays,
such as web browsing or instant messaging [7–11]. In terms of anonymity prop-
erties, allowing for higher delays is rewarding, since this delay allows to reduce
timing correlations between the packets of the same connection, thus making it
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harder for a passive eavesdropper to detect the communicating parties. As a con-
sequence, high-latency anonymous communication systems defend against global
passive adversaries (e.g., an ISP with global vision of the packets traversing the
network). Low-latency schemes, on the contrary, can only provide strong privacy
guarantees against local attackers [9] or have to resort to flooding the network
with dummy traffic (fake traffic used to confuse the adversary, which consumes
bandwidth) to defend against stronger adversaries [10]. In this thesis, we focus on
the study of mix-based anonymous communication systems, a family of (generally
high-latency) schemes that derive from Chaum’s mix [3].

1.1.1. Mix-based Anonymous Communication Systems

Mix-based anonymous communication systems are a family of anonymization
schemes that are built using special relaying nodes called mixes [3]. Mixes were
proposed by Chaum in the seminal paper [3], and were refined in subsequent
works [4,12–14]. Broadly speaking, a mix is a router that relays messages in such
a way that it is not possible for an external observer to link incoming and out-
going packets. In order to achieve this, the mix performs two basics operations
with the packets it relays: it delays them, and changes their appearance. Fig. 1.1
depicts a generic mix model, that works as follows: first, the mix gathers the
messages it receives and stores them in its buffer or pool until a certain flushing
condition is triggered. Then, the mix selects some messages from its pool ac-
cording to a pool selection strategy, changes their appearance using cryptographic
transformations, and outputs them in a random order to their corresponding
recipients. The process that encompasses these operations (randomly delaying
messages, changing their appearance, and forwarding them) is typically known
as a round or batch of mixing. An external observer of the messages arriving and
departing from the mix cannot trivially link them based on their appearance (due
to the cryptographic transformations which prevent bit-wise linkability) or their
arrival/departure times (due to the delay and batching of messages which prevent
timing linkability). Thus, this observer can only statistically link the messages
(e.g., know that the recipient of a particular message is among a set of recipients)
and therefore the mix provides a certain degree of communication anonymity.

The mix itself knows the correspondences between the input and output mes-
sages (since it handles all the appearance and timing transformations). To avoid
placing full trust in a single mix, implementations of mix-based anonymous com-
munications systems build networks by connecting several of them. Messages
are routed through the network, so that a single message traverses a number of
mixes before reaching its destination. In [3], Chaum proposes to use a cascade
of mixes (i.e., several mixes connected one after the other) chosen according to
the network topology or trust. The sender encrypts the message using layered
encryption, and each mix decrypts the outer layer, performs its operations, and
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Figure 1.1: Mix model. The mix gathers messages from different senders and
stores them in its pool. When a certain flushing condition is triggered, the mix
selects some messages from its pool, transforms them cryptographically and for-
wards them to their recipients. An eavesdropper observing the traffic that tra-
verses the mix cannot link the incoming and outgoing messages.

forwards messages to the next node. This way, the system provides anonymity
against a global passive adversary as long as she is not in control of all of the mixes
that the message traverses. Subsequent iterations of mixnets propose different
network topologies (free-route networks, restricted routes) that provide different
scalability, reliability and privacy properties [4, 6, 15–17].

Types of Mixes. Regarding their mode of operation, mixes can be broadly clas-
sified according to their flushing condition and their pool selection strategy [18].
The flushing condition is the event that causes messages to leave the mix. There
are different types of mixes according to their flushing condition. Threshold mixes
gather messages until a certain pre-determined number of them have been re-
ceived. Then, they run their pool selection strategy and forward some of these
messages to their destination. On the other hand, timed mixes output messages
periodically according to a timer. Some designs, such as Mixmaster [4], imple-
ment more complex algorithms by combining these two flushing conditions. Oth-
ers, known as continuous mixes [13], such as Kesdogan’s Stop-and-Go mixes [12],
get rid of the concept of “batches” and store each message independently for a
certain amount of time that is sampled randomly from a delay distribution.

The pool selection strategy determines how the mix chooses messages from its
pool when the flushing condition triggers. Even though all mixes have a “pool”
where they store messages, the term pool mixes is normally reserved for mixes that
have a non-zero probability of keeping some messages in its pool between rounds
(i.e., those mixes that sometimes do not output all of their messages at the end
of a round). Broadly speaking, we can distinguish between pool mixes that apply
an independent delay to each message and those that do not. A typical example
of the former are binomial pool mixes [14], that flip a biased coin for each message
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at the end of each round to decide if it leaves the pool or not. Mixes that apply
an independent delay to each message can be characterized by the probability
density function of this delay, called delay characteristic function [13,19]. On the
contrary, deterministic mixes [14] pick a fixed number of messages randomly from
the pool and output them. This creates dependencies between the delays of the
messages inside the pool (e.g., the fact that a message leaves the pool decreases
the probability that another particular message has left in the same round).

Dummy Traffic. A common approach to improve the anonymity properties of
mix-based systems is to include dummy traffic into the mix designs. Dummy mes-
sages are fake messages that are indistinguishable in appearance from real ones,
and can either be generated by the users [20] or by the anonymity provider [18].
Since they look as real messages to the eyes of an external observer, dummy mes-
sages increase the adversary’s uncertainty about who is the real sender/recipient
of a message [21,22]. This increase in anonymity comes at an overhead cost, i.e.,
an increase in the bandwidth required to communicate.

Attacks on Mixes. When communications take place over a sufficiently long
period of time, a malicious eavesdropper observing the flow of messages traversing
the mixes can learn information about the communication preferences of the users
by means of a disclosure attack. These communication preferences refer to who
the communication partners of a particular sender are, or how frequently a sender
sends messages to a particular recipient. The first Disclosure Attack [23,24] relies
on graph theory to uncover the recipient set of a target user Alice. It identifies
the set of Alice’s contacts by seeking mutually disjoint sets of receivers among
the recipient anonymity sets of the messages sent by Alice. The subfamily of
Hitting Set Attacks [25, 26] speeds up the search for Alice’s messages recipients
by restricting the search to unique minimal hitting sets.

The Statistical Disclosure Attack (SDA), originally proposed by Danezis [27],
and its sequels [22,28,29], estimate Alice’s sending profile by averaging the prob-
ability distributions describing the recipient anonymity set [30] of her messages.
Mathewson and Dingledine improved Danezis’ SDA by extending it to a more
general scenario and to more complex mixing algorithms [22].

Troncoso et al. proposed in [31] two attacks: the Perfect Matching Disclosure
Attack (PMDA) and the Normalized Statistical Disclosure Attack (NSDA). These
attacks can only be used when the mixes flush all the messages in their pool at the
end of a round. The attacks exploit that, in this case, the relationship between
sent and received messages in a round must be one-to-one. PMDA accounts
for this interdependency by searching for perfect matchings in the underlying
bipartite graph representing a mix round, while NSDA normalizes the adjacency
matrix representing this graph.

Danezis and Troncoso propose Vida attack [32], where they use Bayesian
sampling techniques to co-infer users’ profiles and de-anonymize messages. The
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Bayesian approach outputs samples from the distribution of all possible sending
profiles, which in turn allows to infer reliable error estimates. However, Vida
requires the adversary to repeatedly seek for perfect matchings, increasing the
computational requirements of the attack. Finally, Pérez-González and Troncoso
propose the Least-Squares Disclosure Attack (LSDA) [33], that estimates the
users’ communication profiles as the solution of a least-squares problem.

1.1.2. Our Contributions

Our main contributions in this topic are separated into two chapters of the
thesis:

Chapter 2: Limits of Dummy Traffic Protection in Anonymous
Communication Systems. We analyze the effect of dummy traffic in the
anonymity granted by pool mixes. We provide closed-form expressions for
the privacy of the users as a function of the system parameters. This allows
us to design optimal dummy strategies, i.e., find the best way of using a
restricted budget of dummy traffic towards achieving a specific privacy goal.
We demonstrate the feasibility of our approach on two privacy objectives:
increase the protection of all the users by a constant factor, and maximize
the minimum protection of all the users in the system.

This chapter is adapted by permission from Springer Nature Customer Service

Centre GmbH: Simon Oya, Carmela Troncoso, and Fernando Pérez-González.

Do dummies pay off? limits of dummy traffic protection in anonymous commu-

nications. In Privacy Enhancing Technologies, volume 8555 of Lecture Notes in

Computer Science, pages 204–223. Springer International Publishing, 2014.

Chapter 3: Design of Pool Mixes Against Profiling Attacks in Real
Conditions. We study the performance of pool mixes that independently
delay each message under realistic user behavior. We propose a statistical
model for user behavior that captures complex behavioral traits. Then, we
use this model to analyze the anonymity of pool mixes and study the delay
characteristic that maximizes this anonymity. We evaluate our behavioral
model and our delay characteristic designs using real traces, showing that
they outperform previous proposals.

This chapter is adapted with permission from IEEE: Simon Oya, Fernando Pérez-

González, and Carmela Troncoso. Design of pool mixes against profiling attacks

in real conditions. IEEE/ACM Transactions on Networking, 24(6):3662–3675,

2016.

We have made other contributions on this topic, that for brevity we do not
present in this thesis:
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Meet the Family of Statistical Disclosure Attacks [34]. We compare
different variants of the Statistical Disclosure Attack (SDA) found in the
literature [22, 27], propose two new attacks and show their relation with
the Least Squares Disclosure Attack (LSDA) [33]. We prove analytically
that LSDA asymptotically outperforms the most sophisticated variant of
the SDA, and evaluate this finding empirically.

A Least Squares Approach to the Static Traffic Analysis of High-
Latency Anonymous Communication Systems [35]. We formalize
the derivation of the Least Squares Disclosure Attack (LSDA) in pool
mixes without the assumptions of previous works [33, 36], and propose an
algorithm to compute a constrained version of LSDA (C-LSDA) that im-
proves its performance. We extend the theoretical analysis of LSDA found
in [33,36], and empirically evaluate the accuracy of this theoretical formula.

Understanding the Effects of Real-World Behavior in Statistical
Disclosure Attacks [37]. We update the analysis of LSDA in threshold
and timed mixes (without delay between rounds) under realistic user be-
havior. We relax some unrealistic assumptions of previous works regarding
how users act, and obtain a new closed-form expression of the performance
of LSDA. We evaluate this theoretical estimation of LSDA’s performance
using three real-world datasets, confirming that it accurately predicts the
actual performance of LSDA in real cases.

Filter Design for Delay-Based Anonymous Communications [38].
We extend the ideas in our previous work [19] regarding the design of the
delay characteristic of pool mixes in real scenarios, and show that this
problem is connected to filter design problems. We show that the optimal
delay characteristic depends on the adversary observation time, and derive
solutions that are optimal either against long-term or against short-term
attacks. Finally, we use the connections between pool mix design and filter
design to extract conclusions about the overall performance of cascades of
mixes and propose a decentralized implementation of the binomial pool mix.

1.2. Privacy Against an Adversarial Service

Provider

In the second part of this thesis, we study the problem of communications
with an adversarial service provider. Consider a user that is interested in getting
a service from an honest-but-curious provider. For this, she sends a query to the
provider, and the provider replies with the requested information. In many cases,
the user query contains sensitive information (e.g., the user browsing preferences,
or her actual GPS location). However, the user cannot encrypt the query to hide
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it against the provider, otherwise the provider would not be able to generate
any useful response. Thus, the user has to rely on other techniques to hide her
sensitive information and at the same time get a useful response from the service
provider.

In this thesis, we focus on one instance of this privacy problem: the case of
providing privacy to the users of Location Based Services (LBS). These services
rely on the user’s real location to operate (e.g., they search for nearby points-of-
interest, register location check-ins, or count calories based on the user’s move-
ments). The real user location is many times sensitive, and thus sharing it with
the service provider violates the user’s privacy. We illustrate this privacy problem
with an example. Imagine that Alice is at a hospital and wants to find out where
the closest bar is. For this, she sends a query to a Location Based Service (LBS)
using her smartphone. The LBS replies to Alice, but also learns that she is at a
hospital. This is a violation of Alice’s privacy, since it might suggest that Alice
has a particular disease.

Fortunately, the privacy community has developed many solutions that par-
tially hide the location information from service providers. This is known as
providing location privacy [39, 40]. Duckham and Kulik [41] broadly classify
location privacy protection strategies into four types: regulatory strategies (e.g.,
government rules on how to use personal data), privacy policies (particular agree-
ments between the individuals that provide their location data and the entities
that receive it), anonymity (e.g., sharing the location data of many individuals
while replacing the identity of each of them with a pseudonym), and obfuscation
(share the location data with reduced quality). In addition to these approaches,
other works propose cryptographic solutions for location privacy [42–44]. In this
thesis, we focus exclusively on obfuscation-based location privacy, and use the
term Location Privacy Preserving Mechanism (LPPM) to refer to the tool that
individuals use to obfuscate their location data.

1.2.1. Obfuscation-Based Location Privacy

There are many strategies that deliberately degrade the user’s location data,
while preserving some utility of the query results. One of the most common
techniques is perturbation. Perturbation-based LPPMs generate obfuscated loca-
tions by adding random noise to the real locations of the user. This noise can be
sampled from a known distribution (e.g., 2-dimensional Laplacian noise [45]) or
characterized by a probability density function (pdf) built ad-hoc for the situation
(e.g., the pdfs that result from solving an optimization problem [46]). Figure 1.2
illustrates a scenario where Alice uses a perturbation mechanism. Here, Alice
wants to know the bar that is closest to her location. However, she does not want
to reveal her real location to the LBS. Therefore, she relies on a perturbation-
based LPPM to generate an alternative location, which is achieved by adding
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Alice's
Real location

Noise
Obfuscated

location

?
Query

Response

Figure 1.2: Example of a perturbation-based LPPM. Alice wants to know the bar
that is closest to herself, but does not want to reveal her real location. In order
to do so, she uses a Location Privacy Preserving Mechanism (LPPM) to generate
an obfuscated location and performs the query with respect to this location. This
impedes the service provider from learning Alice’s whereabouts. Thus, she gets
privacy, but she also loses utility, since the bar that is closest to her obfuscated
location is not the one that is closest to her real location.

noise to her real location. Alice performs the query with her obfuscated location.
The LBS observes the obfuscated location and knows that Alice has generated
this fake location by adding noise to her real one. Even though the LBS knows
that Alice’s real location lies close to the reported location, it is not possible for it
to pinpoint Alice’s real location in the map. Thus, Alice achieves a certain degree
of privacy against the LBS. However, she also loses some quality of service, since
the bars that are closest to her actual location might not be the ones that are
closest to the perturbed location.

Another type of obfuscation-based LPPMs are cloaking mechanisms. These
LPPMs build a “cloaking region” that contains several other users and/or location
venues, and then perform the query with respect to this area. This way, the
adversary receiving the queries from several users inside the same region cannot
identify the source of each query. One complication with cloaking mechanisms is
that they require cooperation among users [47] or placing trust in a centralized
anonymizer server to build the cloaking region [48–50]. Other type of obfuscation
techniques are hiding mechanisms, which decide randomly whether to perform
the query using the real location, or to not perform it at all [51]. Finally, dummy-
based techniques generate multiple fake locations alongside the real one, and
perform the query for each of them [52–54]. The adversary is not able to know
for sure which of the queries is the real one, and the user gets privacy in exchange
for communication overhead.
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Classifications of LPPMs. LPPMs can be classified according to their ar-
chitecture as centralized or decentralized LPPMs. Centralized LPPMs require
a trusted third party that gathers location information from many users and
processes it before releasing it to the service provider (e.g., the aforementioned
cloaking mechanisms [48–50]). Decentralized LPPMs are user-centric, i.e., users
run these LPPMs individually on their mobile devices to generate the obfuscated
locations that they send to the service provider. In this thesis, we focus only on
user-centric LPPMs.

On the other hand, LPPMs can be implemented in an online or an offline
manner. Online LPPMs generate obfuscated locations on the go as soon as the
user requires querying the LBS. These LPPMs are useful for applications such as
location-based queries or proximity services for social networks. Offline LPPMs,
on the other hand, receive the complete location trace of users and obfuscate it
as a whole (e.g., sharing a database of past location traces with an analyst). In
this thesis, we consider online LPPMs.

Measuring Location Privacy. Location privacy protection mechanisms are
designed with a privacy goal in mind that is expressed in terms of location privacy
metrics. Thus, defining how to quantify location privacy is crucial towards the
development of defense strategies.

One of the most popular location privacy metric of early works is k-anonymity.
This notion is borrowed from the database privacy field [55] and is based on
creating a cloaking region for k users, such that an adversary receiving one of the
queries cannot attribute to which individual (out of the k users) it belongs to.
This notion was first adopted by [56] and it was used in many follow-ups [48,57–
61]. However, it became clear later that k-anonymity provides query anonymity
but not location privacy, as reported in [62]. This is easy to see: if the k users
are all together in a small region, even though they have anonymity against the
LBS, their location is trivially revealed.

Taking inspiration from previous works [39, 40, 63], in 2011 Shokri et al. [51]
propose a framework to quantitatively evaluate LPPMs, claiming that location
privacy should be measured as the adversary’s correctness. This metric can be
defined as the average distance between the adversary’s estimation of the user’s
real location, and the user’s real location. Here, the concept of “distance” can
be tailored to each particular application, e.g., it can be the Euclidean distance,
but also a semantic distance that takes into account the sensitivity of certain
locations [64]. This notion of privacy was widely adopted in most of the works that
followed [45,46,65–67] and became a standard location privacy metric. One of the
disadvantages of the adversary correctness is that it depends on the particular
adversary that is taken into account and her prior knowledge about the user’s
whereabouts.

In 2013, Andrés et al. propose geo-indistinguishability [45], an extension of
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the widely known notion of differential privacy [68, 69] to 2-dimensional spaces.
Geo-indistinguishability is based on the idea that two users that are close should
be indistinguishable if they generate obfuscated locations with a similar spatial
distribution. This notion has been broadly adopted in the location privacy com-
munity [65–67, 70–75], due to its appealing features. One of the most relevant
properties of geo-indistinguishability is that it is adversary-agnostic, i.e., it is
a privacy property guaranteed by the LPPM only, regardless of the amount of
information that the adversary owns about the user’s whereabouts (contrary to
Shokri’s correctness).

1.2.2. Our Contributions

Our location privacy contributions appear in two chapters:

Chapter 4: Revisiting Location Privacy Metrics. We study the
traditional LPPM evaluation approach [51], where privacy and utility are
measured as the adversary correctness and the average quality loss, respec-
tively. We show that there are infinite optimal mechanisms according to
these metrics, and find one mechanism that, while being optimal, is unsuit-
able for the user in terms of usability and privacy. This demonstrates that
judging privacy as correctness alone can be dangerous from a privacy stand-
point. We claim that, in order to properly assess the privacy properties of
an LPPM, we must use complementary privacy metrics, and particularly
advocate the advantages of using the conditional entropy in this regard.
We propose efficient techniques to optimize mechanisms with respect to the
conditional entropy, developing an LPPM that we call ExPost. We evaluate
the performance of ExPost and other LPPMs in terms of different privacy
and quality loss metrics, showing that no mechanism is optimal in terms of
all privacy metrics, and that we cannot rely solely on the correctness metric
to assess the performance of an LPPM.

This chapter is adapted with permission from ACM: Simon Oya, Carmela Tron-

coso, and Fernando Pérez-González. Back to the drawing board: Revisiting the

design of optimal location privacy-preserving mechanisms. In Proc. of Computer

and Communications Security (CCS), pages 1959–1972. ACM, 2017.

Chapter 5: Rethinking Location Privacy for Unknown Mobil-
ity Behaviors. Previous location privacy works largely consider that the
statistics that characterize user mobility are fixed and known a-priori. Thus,
they hardwire these characteristics on the mobility models that they use to
design LPPMs. In this chapter, we challenge this hardwired approach, and
show that hardwired LPPMs perform much worse when evaluated in data
that deviates statistically from such models (which is expected to occur
in practice). To solve this issue, we propose blank-slate models for user
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mobility. These models are not completely determined by training infor-
mation, but are updated a-posteriori as users query the LBS. We leverage
this blank-slate model to build a new type of LPPMs that we call Profile
Estimation-Based (PEB)-LPPMs. We show using real datasets that PEB-
LPPMs outperform previous hardwired proposals when the training data
does not capture individual users’ mobility traits.

This chapter is adapted with permission from IEEE: Simon Oya, Carmela Tron-

coso, and Fernando Pérez-González. Rethinking location privacy for unknown

mobility behaviors. In IEEE European Symposium on Security and Privacy (Eu-

roS&P), IEEE 2019.

We have made an additional contribution to the topic of location privacy, that
we have left out of the thesis for space reasons.

Is Geo-Indistinguishability What You Are Looking for? [76]. We
study the geo-indistinguishability privacy notion and identify that most of
the previous works blindly rely on geo-indistinguishability LPPMs to pro-
vide location privacy, without actually quantifying the amount of privacy
that these LPPMs provide to the users. We propose an alternative inter-
pretation of geo-indistinguishability as a lower bound on the adversary’s
probability of error, and use this more intuitive notion to show that the
amount of noise that is required to provide an acceptable privacy level
using geo-indistinguishability is, for most applications, prohibitive. This
challenges the usage of geo-indistinguishability as a “dogma” and urges to
find settings where this notion can be implemented at a reasonable cost,
such as relying on centralized LPPMs.
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Part I

Mix-Based Anonymous
Communication Systems
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Chapter 2

Limits of Dummy Traffic
Protection in Anonymous
Communication Systems

2.1. Introduction

In the previous chapter we have seen that mixes, anonymous relays that hide
the correspondence between the messages they receive and the messages they out-
put using cryptographic techniques and delay [3], are susceptible to a plethora of
disclosure attacks [22–24,27–33]. These attacks allow a passive adversary to infer
the long-term communication preferences of the users (i.e., their communication
profiles) by observing the traffic flows that arrive to and depart from the mix.

We have also seen that a common approach to improve users’ protection
against profiling is to introduce dummy traffic. The effectiveness of this counter-
measure has been studied theoretically from the perspective of individual mes-
sages in [77]. With respect to profiling, dummy traffic has been tackled in [21,22],
where the authors empirically compute the number of rounds that the attacker
takes to correctly identify some or all the recipients of a sender. The analyses
in [21, 22] are limited in two aspects. On the one hand, the results strongly de-
pend on the specific cases considered in the experiments, and it is difficult to get
insight on their applicability to other scenarios. On the other hand, the analyses
only consider the ability of the adversary in identifying communication partners,

This chapter is adapted by permission from Springer Nature Customer Service Centre
GmbH: Simon Oya, Carmela Troncoso, and Fernando Pérez-González. Do dummies pay off?
limits of dummy traffic protection in anonymous communications. In Privacy Enhancing Tech-
nologies, volume 8555 of Lecture Notes in Computer Science, pages 204–223. Springer Inter-
national Publishing, 2014.
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but not her accuracy at estimating the intensity of the communication; i.e., the
users’ profiles.

In this chapter of the thesis, we study the effectiveness of dummy traffic
against profiling attacks in mix-based anonymous communication systems. Our
goal is to obtain analytical (rather than only empirical) results, so that they
are generalizable to a wide range of high-latency anonymous communication
schemes, and provide the analyst with a bound on the protection achievable
through dummy traffic. Our analysis is based on the least squares approach
introduced in [33].

Another shortcoming of previous works [21, 22, 77] is that the proposed eval-
uation strategies cannot be used to guide the design of effective dummy genera-
tion strategies, which is recognized to be a hard problem [5]. This has lead the
deployed high latency anonymous communication systems to either implement
arbitrary dummy strategies [4] or no dummy traffic at all [5]. Our methodology
can be used to support the design of dummy strategies by approaching strat-
egy selection as an optimization problem in which the error of the adversary is
maximized. The optimization criteria can be chosen by the designer to satisfy dif-
ferent privacy objectives, e.g., balancing the protection among users, or favoring
individual users or relationships.

We illustrate the operation of our methodology using a timed binomial pool
mix. We provide a performance analysis of this mixing strategy in presence of
both sender-based and mix-based dummy traffic, showing that their contribution
to the adversary’s error can be decoupled and analyzed independently. Departing
from this analysis, we design dummy traffic strategies according to two privacy
criteria: increasing the estimation error for all the relationships by a constant
factor, and guaranteeing a minimum estimation error for any relationship. By
hiding relationships, both criteria hinder adversary’s effort to infer user profiles.

This chapter is organized as follows. Section 2.2 introduces the system and ad-
versary model that we assume. In Section 2.3 we derive a least-squares estimator
of the users’ sending profiles in dummy-based anonymization systems. We ana-
lyze the performance of this estimator in Section 2.4 when the anonymous channel
is a timed binomial pool mix. The result of this analysis is used in Sect. 2.5 to
design optimal dummy strategies, and evaluated in Sect. 2.6. We discuss practical
aspects of our method in Sect. 2.7 and finally conclude in Sect. 2.8.

2.2. System Model and Notation

In this section, we introduce the system and adversary model that we as-
sume in this chapter, together with our privacy metric and the notation we use
(summarized in Table 2.1).



Chapter 2. Dummy Traffic in Anonymous Communication Systems 19

System Model. Our system consists of N senders, designated by index
i ∈ {1, 2, . . . , N}, that communicate with M receivers, designated by index
j ∈ {1, 2, . . . ,M}, through a mix-based anonymous communication system imple-
menting a pool. Messages in the system may be real or dummy messages: decoy
messages indistinguishable from real traffic. We consider two types of dummy
traffic:

Sender-based dummies: senders may send dummy messages to the mix
along with their real messages. Sender-based dummies can be recognized
and discarded by the mix.

Mix-based dummies: the mix-based system may send dummy messages
to the receivers along with the real messages from the senders. Receivers
are able to identify dummy messages and discard them.

The system operates in batches that we call communication rounds. The
operation of the mix, i.e., its batching strategy, can be characterized by the model
in Figure 2.1, that encompasses the following steps:

1. The senders forward both their real and dummy messages to the mix. We
use xri to denote the total number of messages generated by user i in round
r. The real and dummy messages are denoted by xrλ,i and xrδ,i, respectively.
Note that xri = xrλ,i + xrδ,i.

2. The mix gathers these messages from the senders, identifies the dummy
messages, and discards them (Stage 1).

3. The mix assigns to each of the real messages a waiting time (in rounds)
chosen according to a delay characteristic d, and stores them in its pool.
When a certain flushing condition triggers (e.g., a timer expires), the mix
selects from the pool the messages whose waiting time has expired and
forwards them to the next step. The mix decreases in one unit the waiting
time of the messages that remain in the pool. These messages will be mixed
with the ones arriving in subsequent rounds (Stage 2).

4. Messages leaving the pool traverse a mixing block, which changes their
appearance cryptographically to avoid bit-wise linkability. The messages are
re-organized according to their corresponding recipient (Stage 3). We use
yrj,i to denote the number of real messages from sender i that are addressed
to receiver j that leave the pool in round r. We group these messages by
sender as zri

.
=
∑M

j=1 y
r
j,i and by recipient as yλ,j =

∑N
i=1 y

r
j,i.

5. The mix combines the real messages (from the previous step) with mix-
based dummies before forwarding them to their recipients (Stage 4). We
use yrδ,j to denote the number of dummies sent by the mix to recipient
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Table 2.1: Summary of notation.

Symbol Meaning

N Number of senders, denoted by i ∈ {1, · · · , N}.
M Number of receivers, denoted by j ∈ {1, · · · ,M}.
ρ Number of rounds observed by the adversary, r ∈ {1, · · · , ρ}.
pj,i Probability that a (real) message from sender i is addressed to receiver j.
p̂j,i Adversary’s estimation of pj,i.
xrλ,i (xrδ,i) Number of real (dummy) messages sent by user i in round r.
xri Total number of messages sent by sender i in round r. xri = xrλ,i + xrδ,i.
zri Number of real messages sent by i that leave the pool in round r.
yrj,i Number of real messages from i to j that leave the pool in round r.
yrλ,j (yrδ,j) Number of real (dummy) messages received by j in round r.
yrj Total number of messages received by j in round r. yrj = yrλ,j + yrδ,j.
dk Probability that a message is delayed k rounds in the pool.
Pλi Probability that a message sent by user i is real.
δMIXj Average number of mix-dummies received by j each round, E

{
Y r
δ,j

}
= δMIXj .

MSEj,i Privacy metric: adversary’s estimation error of pj,i, as defined in (2.1).

qi Sending profile of user i, qi
.
= [p1,i, p2,i, · · · , pM,i]

T .
pj Vector of probabilities per receiver, pj

.
= [pj,1, · · · , pj,N ]T .

P Matrix of all probabilities, P
.
= [p1, · · · ,pM ].

X Matrix with all the input messages, (X)r,i
.
= xri .

Z Matrix with all the messages that leave the pool, (Z)r,i
.
= zri .

Ẑ Adversary estimation of Z, as defined in (2.6).
yj Column vector of all the messages received by j, yj

.
= [y1j , y

2
j , · · · , yρj ]T .

Y Matrix with all the output messages, (Y)r,j
.
= yrj .

Yδ Matrix with all the mix-based dummies, (Yδ)r,j
.
= yrδ,j.

D Convolution matrix of the delay characteristic, shown in (2.4).
Pλ Diagonal matrix with all the probabilities of real message, (Pλ)i,i

.
= Pλi .

δMIX Vector of all the avg- mix-dummies per receiver, δMIX
.
= [δMIX1 , δMIX2 , · · · , δMIXM ]T .

j in round r. The total number of messages received by j in round r is
yrj

.
= yrλ,j + yrδ,j.

6. The recipients decrypt the messages they receive, discard the mix-based
dummies, and keep the real ones.

We also define the following vectors and matrices, which shall come handy
later: matrix X is a ρ×N matrix which contains all the input observations, i.e.,
its (r, i)-th element is xri . Similarly, matrix Z contains in its (r, i)-th position the
number of messages from sender i that leave in round r, zri . Matrix Y is a ρ×M
matrix that contains all the output observations, i.e., its (r, j)-th element is yrj .
Matrix Yδ contains only the mix-based dummy messages that leave the mix, i.e.,
its (r, j)-th element is yrδ,j. Finally, yj is a ρ× 1 column vector with the number
of messages that leave for receiver j in each round, i.e., yj

.
= [y1j , y

2
j , · · · , yρj ]T .
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Figure 2.1: Abstract model of a round in a mix-based anonymous communica-
tion channel (we omit the subscript r for the sake of clarity). A global passive
adversary is only able to see the messages arriving and leaving the mix (i.e.,
xr1, x

r
2, · · · , xrN and yr1, y

r
2, · · · , yrM) but is not aware of what happens inside of it.

We model the sending behavior of users in our population with two parame-
ters:

Probability of real message: the probability of real messages models how
frequently users send real messages, and is denoted by Pλi , i = 1, · · · , N . In
other words, we assume that each message sent by i is real with probability
Pλi , and dummy otherwise, independently of the rest of the messages. We
make no assumptions on the values of Pλi other than 0 ≤ Pλi ≤ 1, and
that the probabilities of real messages are stationary during the observation
period.

Sender profile: the sender profile of user i models this sender’s
choice of recipients for her messages. It is defined as the vector qi

.
=

[p1,i, p2,i, · · · , pM,i]
T , where pj,i denotes the probability that sender i sends

a real message to receiver j. We also define the unnormalized receiver
profile pj

.
= [pj,1, · · · , pj,N ]T and the matrix containing all transition prob-

abilities P
.
= [p1, · · · ,pM ]. We make no assumptions on the shape of the

sender profiles other than qi is in P , the probability simplex in RM , i.e.,

P .
=
{

r ∈ RM : ri ≥ 0,
∑M

i=1 ri = 1
}

. We use P ∈ PN to denote that each

sender profile belongs to P . We assume, nevertheless, that users’ behavior
is stationary during the observation period (the transition probabilities pj,i
do not change between rounds), independent (the behavior of a user does
not affect the behavior of the others) and memoryless (the messages sent
by a user in a round do not affect the behavior of that user in subsequent
rounds). We discuss the implications of the hypotheses above being false in
Sect. 2.7.
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The behavior of the mix-based anonymous communication channel is modeled
by four parameters:

Flushing condition: the flushing condition is an event, e.g., the arrival of
a message (theshold mix) or the expiration of a timeout (timed mix), that
causes the mix to forward some of the messages it has stored in its pool to
their recipients.

Delay characteristic: the delay characteristic models how messages are
chosen to leave the pool. The delay characteristic is defined by the proba-
bility mass function of the delay, measured in rounds. The probability that
a message is delayed k rounds inside the pool is denoted by dk (k ≥ 0).
We assume that the delay characteristic is stationary, i.e., the probability
that a message that arrives to the pool in round r leaves in round s ≥ r
only depends on the difference s − r. We discuss the implications of this
assumption in Sect. 2.7. We do not assume any particular shape for this
distribution, besides dk ≥ 0 and

∑∞
k=0 dk = 1.

Mix dummy characteristics: as explained above, the distributions that
model each of the random variables Y r

δ,j (∀j, r) characterize the amount of
mix-based dummies sent to receivers. We assume that Y r

δ,j is stationary,

i.e., its expectation, denoted δMIXj
.
= E

{
Y r
δ,j

}
, does not change with time.

Adversary Model and Privacy Metrics. We consider a global passive ad-
versary that observes the system during ρ rounds. The adversary is able to see
the identity of each sender and receiver communicating through the mix, but she
is not able to link any two messages by their content nor distinguish between
real and dummy messages. We assume that the adversary knows all the parame-
ters of the system (e.g., the delay characteristic dk, the parameters modeling the
generation of dummy messages Pλi and the distributions Y r

δ,j). The goal of the
adversary is to infer the sending profiles of the users in the system from the ob-
servations, i.e., to obtain an estimator p̂j,i of the probabilities pj,i given the input
and output observations xri and yrj , for every i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · ,M}
and r ∈ {1, 2, · · · , ρ}.

We use the Mean Squared Error (MSE) of the adversary estimation as our
privacy metric. We define this error, for each bilateral relationship between sender
i and receiver j, as

MSEj,i
.
= E

{
|p̂j,i − pj,i|2

}
. (2.1)

The suitability of the estimation error as a privacy metric is thoroughly discussed
in [78], but the intuition is simple: a larger estimation error means that the
relationship between i and j is more protected against the adversary.

The metric in (2.1) depends on the particular estimator p̂j,i that the adversary
computes, and thus it is important to choose this estimator appropriately. The
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long-term disclosure attacks proposed in the literature that are applicable to the
general scenario we have presented are the attacks belonging to the so-called
Statistical Disclosure Attack (SDA) family [22, 34, 35, 79], the Perfect Matching
Disclosure Attack (PMDA) [31] and the Bayesian inference attack (Vida) [32]. We
do not consider other attacks such as the Disclosure Attack [23] or the Hitting
Set Disclosure Attack [25], since they estimate the exact set of contacts of each
sender instead of the intensity of the communications of such sender with each of
her contacts. We also leave the Two-Sided SDA [28] out of our study, since it is
only applicable under some assumptions on how users reply to messages.

The SDA-based attacks obtain the estimator p̂j,i by solving a linear problem
that is built using the observations. Due to their mathematical simplicity, they
can easily be extended to pool mixes with dummies [21,22]. PMDA and Vida work
by finding matchings in the system, i.e., studying the possible correspondences
between all messages entering and leaving the mix. PMDA is based on looking for
the most probable matching, while Vida iterates by sampling matchings given the
observations. In this sense, these two attacks follow a message-based approach,
which they then use to estimate the sending profiles. In principle, we could
think of extending PMDA and Vida to work in pool mixes with dummy traffic.
However, finding matchings in a pool mix requires processing the whole trace
at once, since the pool introduces dependencies between rounds. This renders
PMDA and Vida computationally prohibitive against pool mixes. We therefore
limit our choice to the attacks of the SDA family. From this family, the Least
Squares Disclosure Attack (LSDA) has been proven to outperform all its relatives
[34]. Therefore, we use the performance of LSDA as our metric for anonymity. We
note however that, even though it outperforms any known feasible attack, LSDA
is not necessarily the optimal attack against pool mixes and better non-linear
attacks may appear in the future. Nevertheless, this is the first work to study
optimal dummy strategies in pool mixes against profiling attacks and, hence, our
results shall serve as baseline for future proposals.

2.3. A Least-Squares Profile Estimator for

Dummy-based Systems

LSDA has been originally proposed for threshold mixes without delay between
rounds [33], and extended to pool mixes in [36]. We now apply the methodology
of [80] to derive a least squares estimator of the probabilities pj,i in a pool mix
with dummy traffic. We do this by looking for the matrix of probabilities P that
minimizes the Mean Squared Error (MSE) between the random matrix Y and its
expected value given the inputs X. We define the LSDA estimator of P as

P̂ = argmin
P∈PN

||Y − E {Y|X} ||2 . (2.2)
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In the expression above, the minimization is done among the probabilities P,
which are part of the expected value E {Y|X}. In order to solve this minimization
problem, we need to find an expression of E {Y|X} in terms of P. We first
consider the (r, j)-th element of this matrix, i.e., E

{
Y r
j |X

}
. Note that the total

number of messages received by j in round r is a combination of real and dummy
messages, and the real messages are a combination of messages from all senders.
Mathematically, we can write Y r

j =
∑N

i=1 Y
r
j,i + Y r

δ,j (see Fig. 2.1).

In Appendix 2.A we show that E
{
Y r
j,i|X

}
=
∑r

s=1 x
s
i · dr−s · Pλi · pj,i. Using

this and the fact that E
{
Y r
δ,j|X

}
= E

{
Y r
δ,j

} .
= δMIXj , we can write

E
{
Y r
j |X

}
=

N∑
i=1

r∑
s=1

xsi · dr−s · Pλi · pj,i + δMIXj . (2.3)

We can express this result in matricial form, i.e., find a closed-form expression
for E {Y|X}. If we define the convolution matrix

D
.
=


d0 0 0 · · · 0
d1 d0 0 · · · 0
d2 d1 d0 · · · 0
...

...
...

. . .
...

dρ−1 dρ−2 dρ−3 · · · d0

 , (2.4)

then E {Y|X} can be written as

E {Y|X} = D ·X ·Pλ ·P + 1ρ · (δMIX)T , (2.5)

where we have used that E {Yδ} = 1ρ ·(δMIX)T where δMIX
.
= [δMIX1 , δMIX2 , · · · , δMIXM ]T .

Note that we can define the adversary’s estimation of Z as Ẑ
.
= E {Z|X} and

that using the results we have so far we can write this term as

Ẑ
.
= E {Z|X} = D ·X ·Pλ . (2.6)

Then, we can rewrite (2.2) as

P̂ = argmin
P∈PN

||Y − Ẑ ·P− 1ρ · (δMIX)T ||2 . (2.7)

Interestingly, removing the constraints P ∈ PN in (2.7) leads to an estimator
which is not only unbiased and asymptotically efficient, as proven in [35], but
also makes a detailed performance analysis manageable as we show in Section 2.4.
In the rest of this chapter, we focus on the unconstrained estimator and refer
to [35] for further information about the constrained variant. The solution to the
unconstrained problem, if we assume that ρ > N , is given by the Moore-Pensore
pseudo-inverse, as shown in [35]:

P̂ = (ẐT Ẑ)−1ẐT (Y − 1ρ · (δMIX)T ) . (2.8)
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Table 2.2: Notation of our analysis of the binomial pool.

Symb. Meaning

λi Sending rate of real messages of user i.
δi Sending rate of dummy messages of user i.
α Prob. that a message inside the binomial pool leaves in a round.

λ′j Real message receiving rate λ′j
.
=
∑N

i=1 λipj,i.
αq Auxiliary parameter αq

.
= α/(2− α).

αr Auxiliary parameter αr
.
= α(2− α)/ (2− α(2− α)).

δSEND Total number of average sender-based dummies, δSEND =
∑N

i=1 δi.

δMIX Total number of average mix-based dummies, δMIX =
∑M

j=1 δ
MIX
j .

δTOT Total budget of dummies, δTOT = δSEND + δMIX.

2.4. Performance Analysis in a Timed Pool Mix

with Dummies

In this section, we assess the performance of the least squares estimator in
(2.8) with respect to its profiling accuracy, measured as the Mean Squared Error
(MSE) of estimated transition probabilities pj,i representing users’ behavior (2.1).
We consider the particular case when the anonymous communication channel is
a binomial timed pool mix [14], and the number of messages sent by the users,
as well as the dummies generated by the mix, are Poisson-distributed. In a
binomial timed pool mix, the firing condition is a timeout and the batching
strategy mandates that individual messages leave the pool with probability α
every round, i.e., dk = α(1− α)k. This scenario can be summarized as

Xr
λ,i ∼ Poiss (λi) , Xr

δ,i ∼ Poiss (δi) , Y r
δ,j ∼ Poiss

(
δMIXj

)
,

Pλi = λi/(λi + δi), dk = α(1− α)k,
(2.9)

where λi is the user sending rate, and δi is the user dummy rate, representing
the average number of real messages, respectively dummies, sent by user i. Even
though the results we provide correspond to the above case we must stress that
the reasoning followed in the derivation is applicable to any other system that can
be represented by the model in Sect. 2.2. Table 2.2 summarizes the new notation
introduced in this section.

2.4.1. Profiling Error of the Least Squares Estimator

Under the hypotheses stated in (2.9), in Appendix 2.B we show that the
least squares estimator is unbiased and the MSE of a single transition probability
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estimated is given by:

MSEj,i ≈
1

ρ
· 1

αq
· 1

λi
·
(

1 +
δi
λi

)
·
(

1− λi + δi∑N
k=1(λk + δk)

)

·
(

N∑
k=1

λkpj,k + δMIXj −
αq
αr

N∑
k=1

λkPλkp
2
j,k

)
,

(2.10)

where αq
.
=

α

2− α and αr
.
=

α(2− α)

2− α(2− α)
. This result holds when: i) the

probability that each sender sends a message to receiver j is negligible when
compared to the rate at which receiver j receives messages from all users (pj,i �∑

k λkpj,k), ii) the number of rounds observed is large enough (ρ → ∞), and iii)
λi + δi � (

∑
k(λk + δk))

2.

Interestingly, the terms in (2.10) that depend on i and j can be decoupled:

MSEj,i ≈
1

ρ
· 1

αq
· εs(i) · εr(j) . (2.11)

where εs(i) and εr(j) denote functions that only depend on the sender i and the
receiver j respectively. This property proves to be very useful when designing
strategies to distribute the dummy traffic as we later see in Sect. 2.5.

The latter expression allows to extract qualitative conclusions on the pro-
tection dummy traffic offers to senders and receivers. As it was already shown
in [80], the MSE decreases with the number of rounds observed as 1/ρ, and delay-
ing messages in the pool increases the MSEj,i by a factor (2− α)/α with respect
to an scenario with no delay (i.e., α = 1).

We now analyze the contribution of the users’ behavior to the MSE. The
sender-side contribution εs(i) consists of three terms:

εs(i) =
1

λi
·
(

1 +
δi
λi

)
·
(

1− λi + δi∑N
k=1(λk + δk)

)
. (2.12)

1. The term 1/λi implies that the error when estimating the profile qi =
[p1,i, · · · , pM,i]

T decreases as that user participates in the system more often.
Naturally, when more information about the user becomes available to the
adversary, it becomes easier to accurately estimate her behavior.

2. The second term, 1+δi/λi, is always larger or equal than one, meaning that
sender-based dummies always hinder the attacker’s estimation. The weight
of this component depends on the ratio between the dummy rate and the
sending rate. Hence, a user who sends real messages very often would need
to send a many more dummies to get the same level of protection than a
user who rarely participates in the system.
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3. The last term is in general negligible since, in a normal scenario, the partic-
ipation of a single user is negigible when compared to the total traffic, i.e.,
λi + δi �

∑N
k=1(λk + δk). However, when user i’s traffic is clearly dominant

among the others, this term decreases the overall gain i gets from dummies.
Therefore, although sender-based dummies always increase the protection
of a user, they offer diminishing returns when only one user is trying to
protect herself by sending dummies.

On the other hand, the receiver-side contribution, εr(j), consists of three
summands:

εr(j) =
N∑
k=1

λkpj,k + δMIXj −
αq
αr

N∑
k=1

λkPλkp
2
j,k . (2.13)

1. The first summand is the rate at which j receives real messages from the
senders. We call this term receiver rate and denote it by λ′j. It is interesting
to note that, contrary to the sending rates where large values of λi compro-
mise the anonymity of the senders; large values of receiver rates increase
the protection of the receivers. In other words, it is harder for the attacker
to estimate probabilities related to a receiver which is contacted by a large
number of senders than related to one receiving few messages.

2. The second summand is the rate at which j receives dummy messages from
the mix. The interesting part about this summand is that it can be adjusted
by the mix, to give more protection to a specific receiver j by increasing
the number of dummies addressed to that recipient.

3. The last summand depends on the mix parameters and the users’ behavior.
Since αq/αr ≤ 1 and Pλk ≤ 1, when users do not focus their messages in
few others, i.e., pj,i � 1, this summand becomes negligible. However, if
there is no dummy traffic (Pλk = 1 and δMIXj = 0) and no pool is imple-
mented (αq/αr = 1), this term must be taken into account. In this case

εr(j) depends on the variance of the outputs, i.e.
∑N

k=1 λkpj,k(1 − pj,k),
meaning that it would easier for the attacker to estimate probabilities pj,k
of receivers that get messages from senders whose behavior has low variance
(i.e., senders that always choose the same receiver, pj,k = 1, or users that
never send to a receiver, pj,k = 0). Adding delay or introducing dummy
traffic increases the variance of the output, thus reducing the dependency
of the error on the sending profiles.

The fact that we can differentiate the contribution of i and j in (2.10) also al-
lows for a graphic interpretation of the adversary’s estimation error. Figure 2.2a
represents the values of MSEj,i as a function of i and j, in an scenario with-
out dummies where for simplicity we have assumed that the sending rates are



28 2.5. Designing Dummy Traffic Strategies

0
20

40
60

80
100

0
20

40
60

80
100

10−6

10−5

10−4

10−3

10−2

10−1

(a)

0 10 20 30 40 50 60 70 80 90 100
10−4

10−2

100

No dummies
Uniform dummies

0 10 20 30 40 50 60 70 80 90 100
10−5

100

(b)

Figure 2.2: (a) MSEj,i as a function of i and j in an scenario where λi are sorted
in ascending order and λ′j in descending order. (b) Comparison of the average
MSEj,i along j and i with and without dummies. (N = 100, M = 100, ρ = 10 000,
α = 0.5,

∑
λk = 500. In (b), δSEND = δMIX = 250).

distributed in ascending order according to the senders’ index i, and the receiv-
ing rates are distributed in descending order according to the receivers’ index
j. Fig. 2.2b shows the average MSEj,i over j and i, offering a comparison with
a system where the distribution of the dummies is uniform in both the input
and output flows: εs(i) determines the evolution of MSEj,i with i (top) and εr(j)
the evolution with j (bottom). This means that by distributing dummies among
sender-based and mix-based dummies, which in turn modify the value of εs(i) and
εr(j), we can shape the MSEj,i. We use this idea in the next section to design
dummy strategies that satisfy different privacy criteria.

2.5. Designing Dummy Traffic Strategies

In this section, we study how to distribute dummy traffic in order to guarantee
different privacy criteria. In other words, we aim at finding the values of the
parameters δi for i ∈ {1, · · · , N} and δMIXj for j ∈ {1, · · · ,M} that maximize a
certain cost function representing some privacy objective. We assume that the
total number of dummies δTOT that can be sent on average per round is constrained.
We denote the average number of sender-based dummies on each round as δSEND

.
=∑N

i=1 δi, and the average number of mix-based dummies as δMIX
.
=
∑M

j=1 δ
MIX
j . We

put no restriction on the distribution of dummies among senders and mix other
than δSEND + δMIX ≤ δTOT. For notational simplicity, in the remainder of the section
we omit the constraints δi, δ

MIX
j ≥ 0,

∑N
i=1 δi = δSEND and

∑M
j=1 δ

MIX
j = δMIX in the

equations.
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In order to keep the optimization problems tractable, we assume that the
contribution of a single user to the total input traffic is negligible (i.e., λi + δi �∑N

k=1(λk + δk)) and that users do not focus their traffic in a specific receiver (i.e.,
pj,i � 1). In this case, we can approximate (2.10) as:

M̃SEj,i =
1

ρ
· 1

αq
· 1

λi
·
(

1 +
δi
λi

)
·
(
λ′j + δMIXj

)
=

1

ρ
· 1

αq
· ε̃s(i) · ε̃r(j) , (2.14)

where λ′j
.
=
∑N

k=1 λkpj,k is the receiver rate of j.

2.5.1. Increase the Protection by a Multiplicative Factor

In this section, we design a dummy strategy that, given a budget of dummies
δTOT, increases MSEj,i of each transition probability pj,i by a factor β ≥ 1 as large
as possible with respect to the MSE when there are no dummies, denoted by
MSE0

j,i. Departing from (2.14), we can formalize this problem as:

maximize
δi,δMIXj , ∀i,j

β

subject to M̃SEj,i ≥ β · M̃SE0j,i, ∀i, j
δSEND + δMIX = δTOT .

(2.15)

Note that β is independent of i, j, i.e., we want to increase the estimation error
of each pj,i, at least, by the same factor. Since the effects of the sender-based
and mix-based dummies can be decoupled, we can decouple the increase factor
as β = βSEND · βMIX and then split the optimization into three subproblems:

1. Distribute δSEND among each δi to increase ε̃s(i) by a factor βSEND for all i.

2. Distribute δMIX among each δMIXj to increase ε̃r(j) by a factor βMIX for all j.

3. Distribute δTOT between δSEND and δMIX to maximize the overall increase β =
βSEND · βMIX.

Optimal distribution of sender-based dummies. We want to find the values
of δi that maximize the factor βSEND by which every ε̃s(i) increases. Since ε̃s(i) =
λ−1i (1 + δi/λi), sending δi dummies increases the MSE for sender i by a factor of
1+δi/λi. Since there is a total budget of sender-based dummies shared among all
senders

∑N
i=1 δi = δSEND, the optimal strategy will increase each ε̃s(i) exactly by

the same factor βSEND = 1 + δi/λi (allocating extra dummies to a specific sender k
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to make ε̃s(k) strictly larger than βSEND · 1/λk does not help towards maximizing
βSEND). By combining βSEND = 1 + δi/λi and

∑N
i=1 δi = δSEND, we obtain:

βSEND = 1 +
δSEND∑N
k=1 λk

=⇒ δi =
λi∑N
k=1 λk

· δSEND, ∀i . (2.16)

This confirms the intuition given in Sect. 2.4, that the number of dummies
a user should send to achieve a certain level of protection is proportional to her
sending rate of real messages.

Optimal distribution of mix-based dummies. Similarly, we want to find the
values of δMIXj that increase ε̃r(j) by a factor βMIX compared to the dummy-free
case. Since ε̃r(j) = λ′j + δMIXj , assigning a rate δMIXj to receiver j increases the

M̃SEj,i by a factor of 1+δMIXj /λ′j. As in the sender case above, the optimal solution
will allocate dummies to each recipient such that exactly βMIX = 1 + δMIXj /λ′j for
all j. We can now obtain the sender-based dummy distribution, ensuring that∑M

j=1 δ
MIX
j = δMIX, as follows:

βMIX = 1 +
δMIX∑M
m=1 λ

′
m

=⇒ δMIXj =
λ′j∑M

m=1 λ
′
m

· δMIX, ∀j . (2.17)

As said in Sect. 2.4, the protection that receivers enjoy is proportional to their
receiving rate. Therefore, to increase all MSEj,is by the same factor, more mix-
based dummies have to be given to those receivers that receive more real messages.

Optimal distribution of the overall amount of dummies. Using the dis-
tributions obtained, and since

∑N
k=1 λk =

∑M
m=1 λ

′
m, we can write M̃SEj,i as

M̃SEj,i = M̃SE
0

j,i · βSEND · βMIX = M̃SE
0

j,i

(
1 +

δSEND∑N
k=1 λk

)(
1 +

δMIX∑N
k=1 λk

)
. (2.18)

The distribution of the total amount of dummies that maximizes the increase in
M̃SEj,i is therefore δSEND = δMIX = δTOT/2. This result is particularly interesting:
if we are to increase the relative protection of each user equally, the protection
we get from sender-based and mix-based dummies is the same regardless of the
system parameters. That is, assigning all our available dummies to the senders
or to the mix is equivalent in terms of MSE, and distributing the dummies evenly
between the input and output flow is optimal, being the maximum achievable

gain β ≈
(

1 + δTOT/2∑
k λk

)2
.

2.5.2. Maximize the Minimum Protection of all Relations

Our second design strategy aims at ensuring that the minimum level of protec-
tion of all sender-receiver relationships in the system is as large as possible. This
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implies that dummies are assigned to senders i and receivers j in relationships
whose estimation error MSEj,i is low, in order to increase the minimum MSEj,i in
the system. From a graphical point of view, we can see this as a two-dimensional
waterfilling problem: we need to increase the lower MSEj,i in Fig. 2.2a up to a
minimum, which can be larger as more dummies δTOT are available. More formally,
we want to solve:

maximize
δi,δMIXj , ∀i,j

min
i,j

M̃SEj,i

subject to δSEND + δMIX = δTOT .
(2.19)

As in the previous problem, we can separate the problem in three steps:

1. Distribute δSEND among the δi to maximize min
i
ε̃s(i).

2. Distribute δMIX among the δMIXj to maximize min
j
ε̃r(j).

3. Distribute δTOT between δSEND and δMIX to maximize the minimum M̃SEj,i in
the system.

Optimal distribution of sender-based dummies. We aim at finding the

values of δi that increase the minimum value of ε̃s(i) = 1
λi

(
1 + δi

λi

)
over i, making

it as large as possible given the budget of dummies. This subproblem can be
formulated as

maximize
δi, ∀i

min
i
ε̃s(i)

subject to
N∑
i=1

δi = δSEND .
(2.20)

Let A be the set containing the indices of those senders to whom we assign
dummies, i.e., A .

= {i : δi > 0}. Let ε̃s,MIN be the minimum value of ε̃s(i) we
achieve with this strategy. Then, the following statements are true:

We do not assign sender-based dummies to those users k whose ε̃s(k) ≥ ε̃s,MIN
without dummies; i.e., we only use sender-based dummies to help users
achieve that minimum.

There is no gain in assigning dummies to a user k if by doing so we are
increasing ε̃s(k) above any other ε̃s(i); i.e., every user k ∈ A fullfills ε̃s(k) =
ε̃s,MIN.

Given ε̃s(k) = ε̃s,MIN, and to ensure
∑N

k=1 δk =
∑

k∈A δk = δSEND we can get an
expression for ε̃s,MIN:

ε̃s,MIN =
1

λk

(
1 +

δk
λk

)
=⇒ ε̃s,MIN =

δSEND +
∑

k∈A λk∑
k∈A λ

2
k

. (2.21)
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In order to compute A, we assume w.l.o.g. that the indices are given to users
such that their sending frequencies are sorted in descending order, λ1 ≥ λ2 ≥
· · · ≥ λN and we let Ai .= {1, 2, · · · , i}. Then, A = An where n is the minimum
value that meets1

1

λn
≤ δSEND +

∑
k∈An

λk∑
k∈An

λ2k
≤ 1

λn+1

. (2.22)

Finally, we assign

δi =

{
λi (λiε̃s,MIN − 1) , if i ∈ An ,
0, otherwise.

(2.23)

Optimal distribution of mix-based dummies. Similarly, we aim at finding
the values of δMIXj that increase the minimum value of ε̃r(j), making it as large as
possible given the budget of dummies. The problem can be formulated as:

maximize
δMIXj , ∀j

min
j
ε̃r(j)

subject to
M∑
j=1

δMIXj = δMIX ,
(2.24)

where ε̃r(j) = λ′j + δMIXj .

We define the set B as the send of receivers that get mix-based dummies,
B .

= {j : δMIXj > 0} and the minimum value of our optimization function we
achieve with this strategy as ε̃r,MIN. Then, following the procedure described
above, we get

ε̃r,MIN =
δMIX +

∑
j∈B λ

′
j

|B| , (2.25)

where |B| denotes the number of elements of B. If the receiver rates are sorted
in ascending order, λ′1 ≤ λ′2 ≤ · · · ≤ λ′M and Bj .

= {1, 2, · · · , j}, then the set
of receivers that receive dummy messages is B = Bn where the value of n is the
smallest that meets

λ′n ≤
δMIX +

∑
j∈Bn λ

′
j

|Bn|
≤ λ′n+1 . (2.26)

Finally, we assign

δMIXj =

{
ε̃r,MIN − λ′j, if j ∈ Bn,
0, otherwise.

(2.27)

1If the condition is not met because all 1/λn ≤ ε̃s,MIN(An), then we can assume that n = N ,
i.e., all users will send dummies.
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Optimal distribution of the overall amount of dummies. In this case we
cannot get a closed-form expression for the optimal distribution of δTOT among
δSEND and δMIX, since it depends on the sizes of the sets A and B. The minimum
M̃SEj,i we achieve is for relationships where both sender and receiver are allocated
dummies, i.e., i ∈ A and j ∈ B. Hence we can obtain this minimum by plugging
the distributions (2.23) and (2.27) into (2.14), obtaining

min
j,i

M̃SE =
1

ρ
· 1

αq
· δSEND +

∑
k∈A λk∑

k∈A λ
2
k

· δMIX +
∑

m∈B λ
′
m

|B| . (2.28)

Optimal values for δSEND and δMIX can be computed by performing an exhaustive
search along δSEND+δMIX = δTOT, computing each time the setsA and B as explained
above. It is interesting to note that, if the number of dummies available is large
enough, i.e., δTOT → ∞, every sender and receiver is assigned dummies. In this
case, since

∑N
k=1 λk =

∑M
m=1 λ

′
m, the optimal strategy would be to distribute the

total amount of dummies evenly between the input and the output traffics, i.e.,
δSEND = δMIX = δTOT/2.

2.6. Empirical Evaluation

In this section we evaluate the performance of the dummy traffic design strate-
gies designed in Sect. 2.5, and validate them against the theoretical bound for the
adversary’s error in (2.10) through a simulator written in the Matlab language.2

The scope of this analysis is focused on supporting our theoretical findings rather
than comparing our estimator with existing attacks. The only attack in the
literature extended to cover dummy traffic is the Statistical Disclosure Attack
(SDA) [5, 21] and it is already shown in [34, 80] that the least squares-based
approach performs asymptotically better than SDA. It must be noted that the
Bayesian inference estimator (Vida) in [32] may return a better estimation than
our least squares estimator. However, its computational cost is huge even for a
threshold mix [80] and it would become prohibitive in a pool mix with dummies.

Experimental Setup. We simulate a system with N = 100 senders and M =
100 receivers. The sending frequencies of the users are sorted in ascending order,
in such a way that λi is proportional to i, and the average total number of real
messages sent by all users is

∑
λi = 500. The sending profiles qi are set such

that user i sends messages to herself and all other users k < i with the same
probability, i.e., pj,i = 1/i if j ≤ i and pj,i = 0. This ensures that receiving rates
λ′j are sorted in descending order. The probability that a message is flushed from
the pool after each round is set to α = 0.5, and the number of rounds observed
by the attacker is ρ = 10 000. The theoretical MSEj,i for this scenario without

2The code will be available upon request.
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Figure 2.3: (a) Evolution of β with the fraction of dummies distributed among
senders and mix. (b) Average MSEj,i evolution over i (top) and j (bottom) when
dummies are distributed uniformly among senders and mix. (N = 100, M = 100,
ρ = 10 000, α = 0.5, δTOT = 500)

dummies is shown in Fig. 2.2a. Though not realistic, this experiment is sufficient
to illustrate the operation of the strategies in Sect. 2.5. The amount of dummies
that users and mix send and their distribution change between experiments. We
run four experiments, two for each dummy strategy in Sect. 2.5. We repeat each
experiment 200 times and plot the average results.

2.6.1. Increase the Protection by a Multiplicative Factor
β

First, we study the influence of the distribution of dummies among senders
and mix in the factor β that can be achieved with this strategy, when on average
δTOT = 500 dummies per round are available. Figure 2.3a shows the evolution of
β for different distributions of dummy messages between senders (δSEND) and mix
(δMIX). We see that the maximum increase is achieved when dummies are divided
equally between the senders and the mix, as predicted in Sect. 2.5.1. Also, this

optimal factor is close to the value we predicted β ≈
(

1 + δTOT/2∑
k λk

)2
= 2.25.

For the particular case where δSEND = δMIX = δTOT/2, we plot in Fig. 2.3b the
average MSEj,i over i (top) and j (bottom) with and without dummies (note
the vertical axis logarithmic scale). We see that indeed all MSEj,i increase by a
constant factor, β = 2.261. The figure also shows that (2.10) accurately models
the profiling error.
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2.6.2. Maximize the Minimum Protection of all Relations

First, we study the influence of the distribution of dummies among senders
and mix on the maximum minimum MSEj,i that can be achieved with this strat-
egy, when on average δTOT = 500 dummies per round are available. Fig. 2.4a shows
the evolution of the average minimum MSEj,i depending on the distribution of
dummies between the senders and the mix. In the scenario considered in our
experiment, the maximum minimum MSEj,i achievable is obtained when approx-
imately 40% of the dummies are assigned to the senders and the remaining 60%
to the mix. This is because, in this strategy, the rate of sender-based dummies
depends quadratically on the real sending rate (c.f. (2.23)), while the number
of mix-based dummies depends linearly on the real receiving rate (c.f. (2.27)).
Hence, mix-based dummies can be distributed more efficiently and it is prefer-
able to assign the mix a larger budget than to the senders. We note that this
result depends strongly on the users behavior. In fact, if the real traffic is dis-
tributed uniformly among receivers but few senders generate the majority of the
traffic, allocating a large fraction of dummy traffic to the senders becomes the
best option.

This is better shown in Fig. 2.4b. The top plot shows the MSEj,i along i when
there are no dummies, and when only sender-based dummies are available (δSEND =
δTOT; δMIX = 0). As expected, more dummies increase the minimum MSEj,i, but,
since the average number of sender-based dummies depends quadratically on
the real sending rate, few senders with high rates exhaust the budget, which
constrains the maximum minimum error achievable in the system. On the other
hand, allocating all the dummies to the mix (Fig. 2.4b, bottom) allows to spread
the distribution of dummies among more relationships, which in turn provides
better overall protection than the previous case.

2.7. Discussion

In this section we discuss how to adapt the derivation of the least squares
estimator in Sect. 2.3 to scenarios where pool and users’ behavior are outside of
the model considered throughout the chapter.

Non-stationary delay characteristic. Our findings can be easily extended to
non-stationary pool mixes, whose delay characteristic changes in each round. In
this case, the delay characteristic is no longer denoted by the parameters dk, but
by a two-parameter function Fr,k that represents the probability that a message
that arrives to the mix in round k leaves in round r. With this parameter, it is
easy to build a new matrix D for the least-squares estimator (2.8). For the full
details, we refer to the original paper [81] where we used this variation to derive
the attack.
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Figure 2.4: (a) Evolution of the minimum MSEj,i with the fraction of dum-
mies distributed among senders and mix. (b) Average MSEj,i evolution over i
when only sender-based dummies are available (top), and j when only mix-based
dummies are available (bottom). (N = 100, M = 100, ρ = 10 000, α = 0.5,
δTOT = 100, 500)

Non-stationary sending profiles. In practice, users’ behavior is expected to
change over time. Our estimator can be adapted to account for dynamic profiles
by implementing the Recursive Least Squares algorithm [82]. This algorithm
includes a forgetting factor, which determines how fast the algorithm “forgets”
past observations. Tuning this parameter, one can choose between getting a high-
variance estimator of the recent users’ sending profile or obtaining a more stable
long-term sending profile.

Non-independent users with memory. Although our model considers dis-
joint sets of senders and receivers, it can easily accommodate the case where users
both send and receive messages. In this scenario, users’ sending behavior may be
dependent on messages sent or received in the past (e.g., email replies). Given a
model of these interactions between users one can compute the expected value of
the output observations given the inputs, and then proceed with the derivation
of the estimator as in Sect. 2.3.

Non-stationary dummy strategies. If the probability of sending a real mes-
sage (Pλi) changes over time, a per-round probability P r

λi
could be defined. This

dynamic probability can be used in the derivations in the Appendix (c.f. (2.30))
to account for the effect of this variation on the attacker’s estimation of the hid-
den variables zri . When the average mix-based dummies (δMIXj ) vary over time, an
aware attacker can include this behavior in (2.3), modifying the expected value
of the outputs and thus the attack.

Complex batching strategies. Our anonymous channel model does not cover
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pool mixes whose batching strategy depends on the number of messages in the
pool, such as that used by Mixmaster [4]. However, extending our model to this
scenario is straightforward: the adversary can estimate the average number of
messages in the pool by discarding a percentage of the incoming messages that
are expected to be dummy, and therefore she can get an estimate of the average
number of messages from each user that leave in each round, zri . The estimator
would still be formulated as (2.8).

2.8. Conclusions

In this chapter, we have proposed a methodology to analyze mix-based anony-
mous communication systems with dummy traffic. Following a least squares ap-
proach, we derive an estimator of the probability that a user sends messages to a
receiver. This estimator allows us to characterize the error of the adversary when
recovering user profiles, or individual probabilities, with respect to the system
parameters. Furthermore, it can be used to design dummy strategies that satisfy
a wide range of privacy criteria.

As an example, we have studied the performance of the least squares estimator
on a timed binomial pool mix, which enables us to derive qualitative conclusions
about the effects of dummy traffic on the adversary’s error. We have used this
estimator to design dummy strategies that, given a budget of dummies, achieve
two privacy targets: increase the protection of each sender and receiver relation-
ship equally, and maximize the minimum protection provided to any relationship
between users. The empirical evaluation of these strategies validates our theo-
retical results and confirms the qualitative intuitions drawn in the performance
analysis.

Our methodology improves our understanding on the effect of dummy traf-
fic on privacy in anonymous communication systems. It can be seen as a step
forward towards the development of a systematic method do design dummy traf-
fic, especially important to evaluate and improve privacy protection in deployed
mix-based systems such as [4, 5].
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Appendix

2.A. Conditional Expectations in Our Model

We compute the expressions of different conditional expectations in our pool
mix model introduced in Section 2.2.

Expectation of Y r
j,i given Z. Note that the messages from sender i that leave

the mix in round r, i.e., zri , are sent to receiver j, each one, with probability pj,i.
Mathematically, we can model Y r

j,i given Z as a binomial distribution:

Y r
j,i|Z ∼ Bi(zi, pj,i) , (2.29)

Therefore, it is straightforward that E
{
Y r
j,i|Z

}
= zri · pj,i.

Expectation of Zr
i given X. For simplicity, we assume that, by the time the

adversary starts observing the system, the pool is empty. In practice, the initial
messages in the pool would appear as noise in the initial output observations
and its effect can be disregarded when the number of observations is large, as
explained in [35]. The messages sent by user i in round r, i.e., xri , are each real
with probability Pλi or dummy otherwise. Mathematically,

Xr
λ,i|X ∼ Bi(xri , Pλi) . (2.30)

The real messages go into the pool, and each one waits a number of rounds k
randomly chosen following the delay characteristic dk. The (real) messages from
sender i that leave in round r, i.e., Zr

i , might have been sent in any previous
round s ≥ r. Let Zs→r

i denote the random variable that models the number of
messages from sender i that entered the pool in round s and leave in round r.
Note that Zr

i =
∑r

s=1 Z
s→r
i . Since the xrλ,i messages that enter the pool in round

r might leave in any of the current or following rounds, we can model

{Zr→r
i , Zr→r+1

i , Zr→r+2
i , · · · |xrλ,i} ∼ Multi(xrλ,i, {d0, d1, d2, · · · }) , (2.31)

39
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Table 2.3: Additional notation in Appendix 2.B.

Symbol Meaning

ej Error vector in the estimation of pj, i.e., ej
.
= p̂j − pj.

Cej Covariance matrix of ej, i.e., Cej
.
= E

{
eje

T
j

}
.

Σyj |X Covariance matrix of yj given X, shown in (2.38).
Rxx Autocorrelation matrix of the input process, Rxx

.
= E

{
XTDTDX

}
.

Fλ Diagonal matrix with the real message sending rates λ1, . . . , λN .
Fδ Diagonal matrix with the dummy message sending rates δ1, . . . , δN .
Pjj Diagonal matrix with the transition probabilities pj,1, . . . , pj,N .

λ′j Real message receiving rate λ′j
.
=
∑N

i=1 λipj,i.

λ′′j Auxiliary parameter λ′′j
.
=
∑N

i=1 λiPλip
2
j,i.

αq Auxiliary parameter αq
.
= α/(2− α).

αr Auxiliary parameter αr
.
= α(2− α)/ (2− α(2− α)).

αs Auxiliary parameter αs
.
= α3/ (1− (1− α)3).

where Multi stands for multinomial distribution. Finally, using (2.30) and (2.31),
we can write

E {Zr
i |X} =

∑r
s=1 E {Zs→r

i |X}
=
∑r

s=1 E
{

E
{
Zs→r
i |Xs

λ,i

}
| X
}

=
∑r

s=1 E
{
Xs
λ,i|X

}
· dr−s

=
∑r

s=1 x
s
i · dr−s · Pλi ,

(2.32)

which concludes the derivations.

Expectation of Y r
j,i given X. Using the law of total expectation together (2.29)

and (2.32), it is straightforward to get

E
{
Y r
j,i|X

}
= E

{
E
{
Y r
j,i|Z

}
|X
}

= E {Zr
i |X} ·pj,i =

r∑
s=1

xsi ·dr−s ·Pλi ·pj,i . (2.33)

2.B. Mean Squared Error of the Least-Squares

Estimator

We aim at deriving an expression for the Mean Squared Error (MSE) per
transition probability pj,i of the least-squares estimator in (2.8), defined as
MSEj,i

.
= |p̂j,i − pj,i|2. In order to do so, we use additional notation, that we

include in Table 2.3 for convenience.

First, note that we can write the LSDA estimator in (2.8) for a single receiver
profile as

p̂j = (ẐT Ẑ)−1ẐT (yj − δMIXj · 1ρ) . (2.34)
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We first show that this estimator is unbiased. From (2.5), we know that
E {yj|X} = Ẑ · pj + δMIXj · 1N . Now, using this together with the law of total
expectation,

E {p̂j} = E {E {p̂j|X}} = E
{

(ẐT Ẑ)−1ẐT
(
E {yj|X} − δMIXj 1N

)}
= E {pj} = pj .

(2.35)

We define the error vector ej
.
= p̂j − pj, and note that MSEj,i is the i-th

diagonal element of Cej
.
= E

{
eje

T
j

}
. Using the fact that pj = E {p̂j|X}, as we

can see from (2.35), we can expand the error vector as

ej
.
= p̂j − pj = (ẐT Ẑ)−1ẐT (yj − E {yj|X}) . (2.36)

Then, we can write Cej as

Cej = E
{

(ẐT Ẑ)−1ẐTΣyj |XẐ(ẐT Ẑ)−1
}

= P−1λ E
{

(XTDTDX)−1XTDTΣyj |XDX(XTDTDX)−1
}

P−1λ ,
(2.37)

where the covariance matrix of yj given X is

Σyj |X
.
= E

{
(yj − E {yj|X})(yj − E {yj|X})T | X

}
. (2.38)

In order to develop (2.37), we need to assume that ρ → ∞ and use the Law
of Large Numbers to make (XTDTDX) approximately independent from the
observed inputs X. This is, given that the input process Xr

i is stationary and
memoryless, we can write

lim
ρ→∞

(XTDTDX)/ρ→ Rxx , (2.39)

where the (m,n)-th element of Rxx is

(Rxx)m,n =
1

ρ

ρ∑
k=1

k∑
r=1

k∑
s=1

E {Xr
mX

s
n}α2(1− α)2k−r−s . (2.40)

We can easily find a matricial expression for Rxx. First, using the hypotheses
in (2.9),

E {Xr
mX

s
n} =

{
(λm + δm)2 + λm + δm, if m = n, r = s,

(λm + δm)(λn + δn), otherwise.
(2.41)

Then, if we assume that ρ� 1/α and define αq = α/(2−α), we can approximate
this autocorrelation matrix by

Rxx ≈ (Fλ + Fδ)[1N×N + αq(Fλ + Fδ)
−1](Fλ + Fδ) , (2.42)
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where Fλ
.
= diag{λ1, · · · , λN} and Fδ

.
= diag{δ1, · · · , δN}. Its inverse, computed

by applying the Sherman-Morrison formula, is

R−1xx ≈
1

αq

(
(Fλ + Fδ)

−1 − 1

αq + tr(Fλ + Fδ)
1N×N

)
, (2.43)

where tr(·) denotes the trace operation. Going back to (2.37), our problem is to
compute the i-th element of the diagonal of

Cej ≈
1

ρ2
P−1λ R−1xxE

{
(DX)TΣyj |XDX

}
R−1xxP−1λ . (2.44)

We follow three steps:

1. Get a closed-form expression for Σyj |X.

2. Compute 1
ρ
E
{

(DX)TΣyj |XDX
}

.

3. Get the i-th element of the diagonal of Cej .

Closed-form expression of Σyj |X. Since the variables Y r
λ,j and Y r

δ,j are inde-
pendent, we can split the computation of Σyj |X into two subproblems:

1. Using the law of total variance, it can be shown that

Var
{
Y r
λ,j|X

}
=

r∑
u=1

N∑
i=1

xui
(
Pλipj,iα(1− α)r−u − P 2

λi
p2j,iα

2(1− α)2(r−u)
)
,

Cov
{
Y r
λ,j, Y

s
λ,j|X

}
= −α2(1− α)r−s

s∑
u=1

(
(1− α)2(s−u)

N∑
i=1

xui P
2
λi
p2j,i

)
r ≥ s .

(2.45)

2. On the other hand, since the variables Y r
δ,j and Y s

δ,j are independent when
r 6= s, we get

Var
{
Y r
δ,j|X

}
= δMIXj ,

Cov
{
Y r
δ,j, Y

s
δ,j|X

}
= 0 .

(2.46)

We can therefore write Σyj |X in matricial form as:

Σyj |X = diag{DXPλPj1N} −D · diag{XP2
λP

2
j1N} ·DT + δMIXj Iρ , (2.47)

where Pj
.
= diag{pj,1, pj,2, · · · , pj,N}.
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Computation of 1
ρ
E
{

(DX)TΣyj |XDX
}
. Using (2.47), we can obtain

1
ρ
E
{

(DX)TΣyj |XDX
}

by performing matrix multiplications. We omit the full
description of these steps for practicality issues and indicate that the result is:

1
ρ
E
{

(DX)TΣyj |XDX
}
≈

(Fλ + Fδ)
{

(λ′j − λ′′j + δMIXj )1N×N + αq
(
1N×N(PjPλ −P2

jP
2
λ) + (PjPλ −P2

jP
2
λ)1N×N

)}
(Fλ + Fδ)

+(Fλ + Fδ)

{
αq(λ

′
j − λ′′j + δMIXj )IN + αsPjPλ − α2

qP
2
jP

2
λ −

(
αq
αr
− 1

)
αqλ

′
jIN

}
,

(2.48)
where λ′j, λ

′′
j , αq, αr and αs are defined in Table 2.3.

Computation of a single element in the diagonal of Cej . The next step is
plugging (2.48) and (2.43) into (2.44) and performing laborious matrix multipli-
cations. We omit writing the whole expression that is obtained after this process
and point out that the i-th element in the diagonal of Cej , which is Var {p̂j,i} or,
equivalently, MSEj,i, is:

MSEj,i ≈
1

ρ
· 1

λi
·
(

1 +
δi
λi

)
·
(

1− λi + δi∑N
k=1(λk + δk)

)

·
(

1

αq

(
N∑
k=1

λkpj,k + δMIXj

)
− 1

αr

N∑
k=1

λkPλkp
2
j,k

)

+
1

ρ
· 1

λi

(
pj,i − Pλip2j,i

)
,

(2.49)

where we have assumed that λi + δi �
(∑N

k=1(λk + δk)
)

. Finally, since we can

assume pj,i �
∑N

k=1 λkpj,k, we get the expression

MSEj,i ≈
1

ρ
· 1

αq
· 1

λi
·
(

1 +
δi
λi

)
·
(

1− λi + δi∑N
k=1(λk + δk)

)

·
(

N∑
k=1

λkpj,k + δMIXj −
αq
αr

N∑
k=1

λkPλkp
2
j,k

)
.

(2.50)
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Chapter 3

Design of Pool Mixes Against
Profiling Attacks in Real
Conditions

3.1. Introduction

Communication delay is one of the most important sources of anonymity in
mix-based anonymous communication systems. As we explained in Section 1.1.1,
mixes that delay messages between rounds, also called pool mixes, use this delay to
break timing correlations between incoming and outgoing messages, thus making
it harder for an adversary to correlate incoming and outgoing traffic. However,
two mixes that use different delay strategies can provide very different protection
levels, even if they both delay the messages by the same amount of time on
average. It is thus important to understand how the messages inside the pool
should be delayed so as to maximize the anonymity of the users.

Pool mixes can be roughly separated between those that delay each of the
messages they receive independently, and those that make a decision taking all
the messages into account. In this chapter, we study pool mixes that delay each
message independently, and that can be characterized according to their delay
characteristic. This delay characteristic is the function from which the random
delays of the messages are drawn, and it has a big impact on the anonymity
properties that the mix provides to its users.

Previous works show that, for a given distribution on the message delay (e.g.,
geometric distribution), higher average delays provide better protection to the

This chapter is adapted with permission from IEEE: Simon Oya, Fernando Pérez-González,
and Carmela Troncoso. Design of pool mixes against profiling attacks in real conditions.
IEEE/ACM Transactions on Networking, 24(6):3662–3675, 2016.
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users [13, 22,83]. The search for the optimal delay characteristic of the pool mix
has been previously carried out in [13,83] from an information-theoretic point of
view and assuming that the user traffic follows unrealistic statistical models.

In this chapter, we adopt an estimation-theoretic approach to the analysis of
pool mixes, studying how to optimize their delay characteristic so as to maximize
the privacy of the users. This complements the information-theoretical approach
of [13, 83] and allows us to obtain results in complex and realistic scenarios. As
in the previous chapter, we are interested in understanding how to protect the
users against profiling attacks, i.e., attacks that aim at revealing the long-term
communication profiles of the users rather than finding the sender and recipient
of a particular message. Our work shows that the optimal design of the delay
characteristic actually depends on how users behave in the system, and therefore
a user-independent solution is not optimal.

We start by presenting a novel theoretical study of mix-based systems that
help us to better understand how the behavior of the users affects their privacy.
We consider users with more complex and realistic behavior than in previous
works, so as to find solutions that maximize the protection of users with com-
plex/realistic behavioral traits. Based on this model, we obtain the delay function
that maximizes our anonymity metric, namely the adversary’s mean square er-
ror. This optimal pool mix design allows users communicating for almost three
years with a global adversary eavesdropping on the communications to achieve
the same level of protection as users communicating for one month through a
binomial pool mix [14], one of the state-of-the-art designs. This highlights the
importance of optimizing the delay characteristic in pool mixes. We validate our
findings with real data, and discuss why previous theoretical analyses are not
suitable in practice. The approach we follow in this chapter can be summarized
in the following steps:

1. We find a theoretical model for the behavior of the users that suits real
behavior.

2. We derive a formula that predicts the performance of the system in real
scenarios.

3. We study which delay characteristic optimizes this formula from the de-
fender’s point of view.

4. We evaluate the designs obtained with real data and compare with the
literature.

The rest of the chapter is structured as follows. In the next section, we ex-
plain the system model and notation used throughout the chapter, explain how we
measure the privacy of the users and describe the real data we use to evaluate our
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Senders Receivers
Select recipientPool

Flushing
condition

Mix

Figure 3.1: System model during the communication round r. A global passive
adversary is only able to see the messages arriving and leaving the mix (i.e.,
xr1, x

r
2, · · · , xrN and yr1, y

r
2, · · · , yrM) but is not aware of what happens inside of it.

findings. We propose a theoretical model for user behavior in Section 3.3, which
we then use to obtain a mathematical expression that models the degree of protec-
tion of the users in the system. With this expression, we solve in Section 3.4 the
problem of building an optimal delay characteristic for the pool mix and propose
quasi-optimal and sub-optimal variants of this design. We evaluate our solutions
and compare them with the binomial pool mix in Section 3.5, and discuss the
differences between our estimation-theory approach and the information-theory
approach taken in previous analysis in Section 3.6. We conclude in Section 3.7.

3.2. Preliminaries

3.2.1. System Model

Throughout this chapter, we use the same pool mix model and notation de-
scribed in Chapter 2, with the simplification that all the messages sent are real
(i.e., there are no dummy messages). As before, the aim of the attacker is to
reconstruct the sending profiles of the users. For convenience, we show this sim-
plified model in Fig. 3.1, and summarize the notation used in the chapter in
Table 3.1. Please refer to Section 2.2 for a thorough description of how the mix
operates and the variables that we use.

3.2.2. Privacy Metrics

As in the previous chapter, we measure the privacy of the users in our system
as the Mean Squared Error (MSE) of the LSDA estimator. As we argue in
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Table 3.1: Summary of notation.

Symbol Meaning

N Number of senders, denoted by i ∈ {1, · · · , N}.
M Number of receivers, denoted by j ∈ {1, · · · ,M}.
ρ Number of rounds observed by the adversary, r ∈ {1, · · · , ρ}.
pj,i Probability that a message from sender i is addressed to receiver j.
p̂j,i Adversary’s estimation of pj,i.
xri Number of messages sent by sender i in round r.
zri Number of messages sent by i that leave the pool in round r.
yrj,i Number of messages from i leaving to j in round r.
yrj Number of messages received by j in round r.
dk Probability that a message is delayed k rounds in the pool.

qi Sending profile of user i, qi
.
= [p1,i, p2,i, · · · , pM,i]

T .
pj Vector of probabilities per receiver, pj

.
= [pj,1, · · · , pj,N ]T .

P Matrix of all probabilities, P
.
= [p1, · · · ,pM ].

xi Vector with all the messages sent by i, xi
.
= [x1i , · · · , xρi ]T .

X Matrix with all the input messages, (X)r,i
.
= xri .

Z Matrix with all the messages that leave the pool, (Z)r,i
.
= zri .

yj Vector of all the messages received by j, yj
.
= [y1j , y

2
j , · · · , yρj ]T .

Y Matrix with all the output messages, (Y)r,j
.
= yrj .

d Delat characteristic of the mix, d
.
= [d0, d1, · · · , dρ−1]T .

D Convolution matrix of the delay characteristic, shown in (2.4).

E Estimation error matrix, E
.
= P̂−P.

Ce Covariance matrix of the estimation error, Ce
.
= E

{
EET

}
.

µ(i) Avg. No of mes. sent by user i per round, µ(i)
.
= E {Xr

i }.
M Diagonal matrix M

.
= diag {[µ(1), · · · , µ(N)]}.

MSET Total average estimation error of the LSDA attacker.
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Sect. 2.2, the reason for this is that, from all the profiling attacks, PMDA and
Vida are computationally unfeasible in pool mixes. This leaves us with the attacks
from the SDA family. From this family, LSDA has been proven to outperform all
its relatives [34].

In the scenario without dummies, we can write (2.8) as

P̂ = (ẐT Ẑ)−1ẐTY , (3.1)

where Ẑ = D ·X.

We defined the MSE of the estimation of pj,i in (2.1) as MSEj,i
.
=

E {|p̂j,i − pj,i|2}. In this chapter, we combine the MSEj,i’s to produce a global
measure of the privacy of the users in the system, that we denote by MSET. In
order to produce a fair combination of the individual MSE’s, we first note that
the product ρ · µ(i) · p̂j,i, where µ(i) is the average number of messages sent by
user i per round, can be seen as an estimation of the number of messages user i
sends to j during the ρ observed rounds. The MSE of this estimation can then be
written as ρ2µ(i)2E {(p̂j,i − pj,i)2}. Now, adding along i and j we obtain the total
MSE of the estimated number of messages each sender sends to each receiver.
Normalizing this quantity to make it comparable to the MSE of a single user
profile, we obtain the total average estimation error :

MSET
.
=

N∑
i=1

µ(i)2∑N
k=1 µ(k)2

·MSEi . (3.2)

where MSEi
.
=
∑M

j=1 MSEj,i. This parameter is a global metric of the level of
protection of all the users against the LSDA attacker. We will use this metric to
assess the performance of a pool mix with a given delay characteristic.

This metric can be expressed in a more convenient way by using the error
matrix E

.
= P̂ − P. We build the MSE matrix Ce

.
= E

{
EET

}
and use the fact

that the diagonal entries of this matrix correspond to MSEi for i = 1, · · · , N to
rewrite (3.2) as

MSET
.
= Tr {MCeM} /Tr

{
M2
}
, (3.3)

where M
.
= diag {[µ(1), · · · , µ(N)]}.

3.2.3. Real Datasets

In this chapter, we use real datasets to validate our theoretical study of pool
mixes and to assess empirically the performance of the pool mix designs. Each
dataset consists of a collection of messages exchanged in a communications sys-
tem, from which we know the sending time, the sender, and the recipient. In
order to work with them, we perform the following preprocessing steps:
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1. We select the flushing condition of our mix, i.e., the condition that triggers
the end of a round, from the two we contemplate. We consider threshold
pool mixes, in which the end of the round is determined by the arrival of
t messages to the system, and timed pool mixes, that wait τ units of time
before triggering the end of the round. We choose values of t and τ that
provide a reasonable anonymity/delay trade-off [37]: we pick t = 100 in the
threshold pool mix in all datasets, and a value of τ in the timed pool mix
that ensures that approximately 100 messages are mixed each round, but
also guaranteeing that a round does not last more than 24 hours.

2. We fit our user behavioral model to the information in the datasets. The
full list of parameters we use to model the sending behavior of the users
and how we compute them from the datasets is explained in Section 3.3.1.

3. We simulate the mixing process as explained in the previous chapter (Sec-
tion 2.2), generating the observations that would be available to the adver-
sary: X and Y.

The three datasets we use, along with the values of time τ we use for the
timed mix in each case, are the following:

Email: this dataset contains about 220 000 emails sent by the employees
of the Enron company.1 We treat each of the 294 email addresses sending
emails as the senders of our system, and consider that messages with mul-
tiple recipients are different messages sent simultaneously to each recipient.
The aim of the anonymous communication system is to hide who sends
emails to whom. We use a value of τ = 12 hours for the timed mix in this
dataset.

Location: this dataset is a collection of around 400 000 location check-ins
which were carried out by the 500 most active users of the Gowalla social
network.2 Each check-in can be seen as a message sent by the sender to the
location the user is checking-in, and the aim of the anonymous communica-
tion system is to hide who checks-in where. The timed mix operates with
τ = 1 hour.

MailingList: this dataset contains almost 180 000 posts to the public mail-
ing lists of Indymedia3 made by the 500 most active posters. The anony-
mous communication system is used to hide which user posts to which
thread. We use τ = 24 hours.

By combining the 3 real datasets and the 2 types of flushing conditions, we
get 6 sets of observations, which we use in Sects. 3.3 and 3.5.

1http://www.cs.cmu.edu/~./enron/
2http://snap.stanford.edu/data/loc-gowalla.html
3http://lists.indymedia.org/

http://www.cs.cmu.edu/~./enron/
http://snap.stanford.edu/data/loc-gowalla.html
http://lists.indymedia.org/
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3.3. Theoretical Study of Pool Mix-based Sys-

tems

In this section we set the theoretical grounds that we later use to improve the
design of the pool mix. We start by proposing a behavioral model for the users of
the mix, and then use this model to develop a formula that establishes a relation
between the delay characteristic of the mix, along with the statistics of the input
and output processes, and the privacy of the system.

3.3.1. Behavioral Model

We aim at proposing a statistical model that characterizes real user behavior
with respect to

(a) How and when users send messages, which is determined by the random
process that models the number of input messages sent by each user i in each
round r, i.e., {Xr

i }.
(b) How senders choose the recipients of their messages, which is characterized

by the random process that models the number of messages at each output
j in round r given all the inputs, i.e., {Y r

j |X}.

3.3.1.1. Input process

For the first of these problems, we assume that the input processes {Xr
i } for

i = 1, . . . , N are stationary and ergodic, i.e., their statistical moments do not
change with the rounds r, and we can compute these moments from a sufficiently
large realization of the process. We do not assume that the input processes
follow any specific probability distribution, which allows us to obtain distribution-
independent results. We assume stationarity and ergodicity in order to be able to
carry out our theoretical analysis afterwards. Nevertheless, as we will see in the
next section, it is enough to assume that these properties hold up to fourth order
moments since these are the moments we handle. We note that, although these
assumptions limit the applicability of our results, we are able to obtain accurate
results for the real data we use in this chapter and, hence, we consider these
assumptions reasonable for a range of realistic scenarios as the ones we study.

3.3.1.2. Output process given the inputs

The problem with {Y r
j |X} is different, as we need to have expressions for

E
{
Y r
j |X

}
and Cov

{
Y r
j , Y

s
j |X

}
relating the inputs and the outputs to perform
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the analysis. We therefore need a model that assigns the input messages to the
outputs.

We propose a model that considers that the messages sent by the users in each
round belong to one of two types of conversations: sporadic conversations and
dedicated ones. The messages that belong to sporadic conversations are sent to a
recipient chosen independently for each message. The messages that belong to a
dedicated conversation are all sent to the same recipient, and this recipient may
be the same across several rounds. With this model, we accommodate different
sending behaviors that were considered in the literature. The independent choice
of recipient, which is an appropriate model in those communication scenarios
where users contact multiple receivers at once or just hold sporadic communica-
tions with different users (e.g., Email dataset), has been assumed in most of the
previous works [22,31–35]. On the other hand, the model that considers dedicated
conversations, more appropriate in systems where users hold long conversations
with a single receiver before switching to another one (e.g., Location and Mail-
ingList datasets), was only used in [37], although the authors of that work did
not consider that users who focus on a certain recipient are more likely to keep
sending messages to that same recipient in consecutive rounds. We now describe
into detail how our model works.

Model description: there are three parameters that model the sending
behavior of each user i: the sending profile qi, which was defined before, the
focus γi and the persistence εi. Each round r, the number of messages each
user i sends, xri , is assigned independently to the dedicated conversation group
xri,DE with probability γi, and to the sporadic conversation group xri,SP otherwise.
Then, all the messages in xri,DE are assigned a single recipient: this recipient is

the same as the one chosen for the messages in the previous round (i.e., xr−1i,DE)
with probability εi, and a new one following qi otherwise. The recipient of each
of the messages in xri,SP is chosen independently and according to the sending
profile qi. This model is depicted in Fig. 3.2. Table 3.2 summarizes the new
notation introduced in this section.

The rationale behind this model is the following. The focus γi is a probability
that allows us to model users that tend to focus in a single receiver per round (γi
close to 1), or users that are more likely to send sporadic messages to different
contacts (γi close to 0). Intermediate values allow us to model hybrid users. The
persistence εi allows us to model how likely the user is to focus on the same
receiver during consecutive rounds. This value will be closer to 1, for example,
for users that tend to keep long conversations with others, while it will be close
to 0 for users that keep short but dedicated conversations with their recipients.
This model does not account for inter-relations between users, i.e., the fact that
a user choosing a certain receiver affects the choice of other users’ receivers (as
opposed to users choosing their recipients independently of each other). Including
this feature in the system would require many additional parameters (N2), which
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previous
receiver

each

all

Figure 3.2: Representation of how the receivers are assigned to the messages sent
by user i in round r in the proposed behavioral model.

has two disadvantages: it would substantially increase the difficulty of the privacy
analysis, and obtaining these parameters given the observations would likely cause
overfitting problems.

We note that, although the model does not capture scenarios where users
send messages to a group of receivers (e.g., broadcast messages or dedicated
conversations with multiple receivers), we obtain accurate results in presence of
such traffic (e.g., results on the Email dataset [37]). We conjecture that these
results are due to the effect of the pool, that delays messages independently and
therefore group messages can be treated as sporadic messages in our analysis. In
presence of more complex user sending behavior, the model should be modified
by the system designer and validated following the methodology explained below.

Fitting the model to real data: We now explain how we compute the
values of the parameters of our model (i.e., qi, γi and εi for all i ∈ {1, · · · , N})
for each dataset and flushing condition of the mix described in Section 3.2.3. The
sending profile qi contains the probabilities pj,i that sender i sends a message to
each receiver j ∈ {1, · · · ,M}. We compute these probabilities by counting the
total number of messages user i sends to j and dividing between the total number
of messages sent by user i.

Regarding the choice of γi and εi, we pick them so as to accurately fit the
variance (and covariance) of the outputs given the inputs. First, we take into
account the type of mix used and generate samples from the number of messages
sent by sender i in each round r: xri . Then, we store the number of messages
from xri that go to each receiver j in ỹrj,i (note that this process is different from
yrj,i because it does not take the delaying in the pool into account). Let σ̄li be the
total sample output covariance with l rounds of difference, i.e.,

σ̄li
.
=

ρ−l∑
r=1

M∑
j=1

(ỹrj,i − xri · pj,i)(ỹr+lj,i − xr+li · pj,i) . (3.4)
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Table 3.2: Notation developed in Section 3.3.

Symb. Meaning

vi Uniformity: vi
.
= 1− ||qi||2.

γi Focus: prob. of sending each message to the focused receiver.
εi Persistence: prob. of keeping the focused receiver between rounds.

xri,DE Mes. from xri assigned to the dedicated conv. group.
xri,SP Mes. from xri assigned to the sporadic conv. group.
σli Total output covariance for user i with l rounds of difference.
σ̄li Total sample output covariance for user i with l rounds of diff.

r1(i) Combination of vi and γi; r1(i)
.
= (1− vi) + γ2i vi.

r2(i) Combination of vi and γi; r2(i)
.
= γ2i vi.

Likewise, let σli be the value of the output covariance given by our model, i.e.,

σli
.
=

ρ−l∑
r=1

M∑
j=1

Cov
{
Ỹ r
j,i, Ỹ

r+l
j,i |Xr

i = xri , X
r+l
i = xr+li

}
. (3.5)

This value is computed using

M∑
j=1

Var
{
Ỹ r
j,i|Xr

i

}
=
(
Xr
i +Xr

i (Xr
i − 1)γ2i

)
vi , (3.6)

and

M∑
j=1

Cov
{
Ỹ r
j,i, Ỹ

r+l
j,i |Xr

i , X
r+l
i

}
= Xr

iX
r+l
i γ2i ε

|l|
i vi , (3.7)

which are the theoretical expressions for the variance and covariance of our model,
derived from the formulas (3.21) and (3.22) in the Appendix. Here, vi represents
the uniformity of the sending profile qi, and is defined as vi

.
= 1 − ||qi||2. The

uniformity ranges from 0, when the profile contains one value equal to 1 and all
the other values are 0, to (N − 1)/N, when it is uniform, i.e., pj,i = 1/M , ∀j.
The first block of Table 3.2 contains a summary of the parameters that affect the
variance of the outputs.

We compute γi for each sender i as the value that minimizes the mean squared
error between the total sample variance and the variance of the model, i.e.,

γi = argmin
γi

(
σ̄0
i − σ0

i

)2
. (3.8)

Similarly, we obtain the values of εi as those that minimize the error between
the total sample covariance and the covariance of the model, using the γi obtained
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in (3.8), and considering only the covariance up to R rounds of difference, i.e.,

εi = argmin
εi

R∑
l=1

(
σ̄li − σli

)2
. (3.9)

We set R = 20 because we have validated empirically that considering more than
20 rounds of difference does not provide extra accuracy in our analysis.

Validation of the model: Figure 3.3 shows how accurate this model is:
we plot the sample covariance Cov

{
Y r
j,i, Y

r+l
j,i |X

}
averaged over all senders i,

receivers j, and rounds r, for each of the real datasets and the different mixing
scenarios described in Section 3.2.3, for different values of the distance between
rounds l. We also plot the average variance estimated given the inputs with the
proposed model, as well as the variance predicted with the models in [37]. Note
that, in the existing models in [37], it was assumed that Cov

{
Y r
j,i, Y

r+l
j,i |X

}
= 0

for l 6= 0, and therefore we can only observe this value for l = 0 in the logarithmic
plot. In all the figures, the covariance decreases as we consider rounds that are
more separated. In Fig. 3.3b the covariance also oscillates. This is because the
activity of the users in Email dataset presents a strong dependency on the time
of the day (note that in this case the duration of the round is τ = 12 hours,
so the periodicity in the figure makes sense). The results of this figure confirm
that, with the sending profile qi and only two additional parameters per user (γi
and εi), our model does not only outperform the prediction of existing models
for l = 0, but it is also able to predict the real covariance accurately for multiple
values of l.

3.3.2. Privacy Analysis

We aim at assessing the privacy of the system based on the behavioral model
we have introduced. Our goal is to obtain an expression for the MSE matrix Ce,
since this can then be used to compute the total average estimation error MSET,
defined in (3.3).

In the previous chapter, we prove that the LSDA estimator is unbiased. We
briefly repeat this result here for the estimator in (3.1). In the Appendix 3.A,
equation (3.24), we show that E {Y|X} = Ẑ ·P, which allows us to write

E
{

P̂
}

= E
{

(ẐT Ẑ)−1ẐTE {Y|X}
}

= E
{

(ẐT Ẑ)−1ẐT Ẑ ·P
}

= P .

Therefore, using the law of total covariance we can write Ce as

Ce
.
= E

{
EET

}
= E

{
(P̂−P)(P̂−P)T

}
= E

{
(ẐT Ẑ)−1ẐTΣY|XẐ(ẐT Ẑ)−1

}
,
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(f) MailingList, timed mix, τ = 24h.

Figure 3.3: Average output covariance Cov
{
Y r
j,i, Y

r+l
j,i |X

}
for each of the datasets

as a function of l, obtained with the real data (•), predicted by the proposed model
(×), and predicted by the existing models (◦). The covariance for values l 6= 0 in
the existing models [37] is 0, and therefore it is only observable when l = 0.

where ΣY|X is a ρ× ρ matrix whose (r, s)-th entry is
∑M

j=1 Cov
{
Y r
j , Y

s
j |X

}
. We

now simplify the computation of Ce by considering that the adversary observes
the system for a sufficiently large amount of rounds. We note that matrices ẐT Ẑ/ρ
and ẐTΣY|XẐ/ρ contain sample averages of up to fourth order moments of the
input processes. Since we are assuming that these processes are ergodic and that ρ
is sufficiently large, we can approximate those matrices by their expected values.
Although we could write these expected values as an expression independent
from ρ, in order to reduce the notational complexity of our analysis we find it
convenient to define them as Rxx

.
= E{ẐT Ẑ}/ρ and Rxyx

.
= E{ẐTΣY|XẐ}/ρ, and
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write

Ce ≈
1

ρ
R−1xxRxyxR

−1
xx . (3.10)

Matrix Rxx depends only on the input process (X) and the delay characteristic
(given by D), and can be written as

Rxx =
1

ρ
E
{
XTDTDX

}
. (3.11)

Matrix Rxyx also depends on the relations between the inputs and the outputs,
represented by the covariance matrix ΣY|X. A closed-form expression of this
latter matrix can be found in (3.25) in Appendix 3.A. Plugging this formula into
the definition of Rxyx above allows us to write

Rxyx =
1

ρ
E
{
XTDT · diag {DX · 1N} ·DX

}
− 1

ρ
E
{
XTDTD · diag {X · r1} ·DTDX

}
+

1

ρ
E

{
XTDTD

[
N∑
i=1

(
xix

T
i ◦Ei

)
r2(i)

]
DTDX}

}
. (3.12)

For readability, we have grouped the effects of vi and γi in the functions r1(i)
.
=

(1− vi) + γ2i vi and r2(i)
.
= γ2i vi. We also use r1

.
= [r1(1), · · · , r1(N)]T . For users

that send messages independently to their contacts (i.e., γi = 0), r1(i) = 1−vi and
r2(i) = 0. In contrast, users that always focus on a certain receiver (i.e., γi = 1)
get r1(i) = 1 and r2(i) = vi. Note that if γi = 0 for a certain user i, then r2(i) = 0
and the contribution of that user to the last summand in (3.12) is zero. In that
case, we can compute Rxx and Rxyx with only the first, second and third order
moments of the input process of that user. However, in most scenarios this will
not be the case, and we would also need the fourth order moments to compute the
last summand of (3.12). Note that, although we have assumed strong stationarity
and ergodicity, it is enough for our analysis to assume stationarity and ergodicity
up to order four, since these are the largest order moments we handle.

We can compute our error metric MSET to assess the privacy of the users
by plugging (3.11) and (3.12) into (3.10). The complexity of this formula is
considerable, and simplifying it yields much less accurate results. Fortunately,
when our goal is to solve the problem of finding the delay characteristic that
maximizes MSET, we can find an alternative objective function relating MSET

and D that is more amenable to analysis and yields a solution close to the optimal
one.
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3.3.3. Evaluation

We evaluate the performance of our formula in a binomial pool mix sce-
nario [14]. The delay characteristic of this mix follows a geometric distribution
dk = α(1 − α)k, where α is the probability that a message stored in the pool
leaves in each round.

Figure 3.4 represents the overall error (3.3) predicted by our formula, together
with the real error of the attack. We also plot the most accurate expressions found
in the literature [37] to model the adversary’s error in these datasets, which we
have adapted to pool mixes. We can see that our formula clearly follows the
trend of the real MSE as the delay characteristic varies, while the ones in [37] are
coincidentally accurate when α = 1 (in this case, d0 = 1 and dk = 0 for k > 0,
so it is equivalent to having no pool), but are not valid to predict the error for
other pool mix designs (α < 1).

3.4. Optimizing the Design of Pool Mixes

In this section, we address the problem of optimizing the performance of the
pool mix with respect to its delay characteristic, i.e., finding the delay charac-
teristic dopt that maximizes our global privacy metric. We start by setting an
optimization problem whose solution is the optimal one, although its complexity
makes it hard to study. In order to shed some light into how dopt depends on
the users’ behavior, we set an alternative optimization problem which is much
more amenable to analysis and whose solution is remarkably close to the optimal
one. Using this alternative formulation of the problem, we study the optimal mix
designs under different assumptions on the users’ behavior, and come up with
a user-independent albeit sub-optimal design, that is useful when no a priori
information about the users is available.

3.4.1. Optimal Pool Mix Design

The optimal delay characteristic can be obtained by looking for the vector
d
.
= [d0, d1, · · · , dρ−1]T that maximizes the overall protection of the users in the

system, defined in (3.3). The problem is formally stated as
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Figure 3.4: Overall MSE of LSDA in different realistic scenarios, as a function of
the firing probability of the binomial pool mix (α), compared with the theoretical
MSE predicted by our formula and the existing ones [37].

Optimal Pool Mix Design Problem:

dopt = argmax
d

Tr {MCeM}

subject to

ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k ,

ρ−1∑
k=1

k · dk ≤ δ̄ .

(3.13)

We have disregarded the normalization by Tr {M2} in (3.3), since this normal-
ization does not affect the maximum of the function with respect to d. The
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first constraint ensures that the delay characteristic obtained constitutes a valid
probability mass function, and the second one is a constraint on the maximum
average delay in rounds that the messages suffer inside the pool, where δ̄ denotes
this maximum average delay. This formulation can also be accommodated to
obtain the optimal delay function given different constraints, for example, a dif-
ferent bound on the maximum delay in rounds tolerated for the messages (i.e.,
Lmax such that dk = 0 for k > Lmax).

Solving the problem in (3.13) is not straightforward: we need to know the
values of a huge amount of input moments (or make assumptions on them) and
all the parameters that model the sending behavior of the users, namely qi, γi and
εi for i = 1, . . . , N . It is also very hard to get an intuitive idea of how the shape
of the optimal delay characteristic dopt relates to these parameters. Motivated
by this, in the next section we look for an alternative formulation of this problem
that is more amenable to analysis.

3.4.2. Quasi-Optimal Pool Mix Design

In the technical report [84], we show that when the number of users in the
system N is comparable to ρ as ρ → ∞, the strategy followed to maximize
Tr {MCeM} and Tr {MR−1xxM} is the same, and therefore the delay character-
istics that maximize each of these functions are similar. In that case, (3.13) can
be formulated as

Quasi-optimal Pool Mix Design Problem:

d′opt = argmax
d

Tr
{
MR−1xxM

}
subject to

ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k ,

ρ−1∑
k=1

k · dk ≤ δ̄ .

(3.14)

Analyzing this problem is much easier than (3.13), as it depends on less pa-
rameters: note that we only need to consider up to second order moments of the
input, and that the dependence on vi, γi and εi is gone. These user parameters
still affect the MSE, but they do so via terms that become independent of the
delay characteristic when N →∞ is comparable to ρ. Interestingly, the solutions
of (3.13) and (3.14) are very close in our real datasets, as we empirically show in
Section 3.5, which indicates that we are in the case of N being comparable to ρ
as ρ→∞ in all the scenarios for which we have data. We remark that for other
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scenarios where N � ρ, the system designer will have to rely on (3.13) to choose
the delay characteristic of the mix.

In order to provide more insight into the shape of the optimal delay charac-
teristic when N and ρ are not comparable, we now study the solution of (3.14)
under different assumptions, when ρ → ∞ and N � ρ. In order to do that, we
first consider that Rxx ≈ Σxx (c.f. [37]), where Σxx is the covariance matrix of the
input processes {X̂r

d,i}, i.e., if Xc
.
= X − 1ρµ

T , then Σxx
.
= E

{
XT
c DTDXc

}
/ρ.

It will be helpful to define additional notation: the variance of the input pro-
cesses is denoted by µ2(i)

.
= Var {Xr

i }. With the variance of all users, we build
M2

.
= diag {[µ2(1), · · · , µ2(N)]}. We define the autocorrelation of the delay char-

acteristic of the mix at lag l asRdd[l]
.
=
∑ρ−1

r=l drdr−l for l ≥ 0, andRdd[l] = Rdd[−l]
otherwise. Note that matrix DTD is ρ×ρ Toeplitz whose r, s-th entry is Rdd[r−s].
Based on this, we can decompose Σxx as

Σxx
.
=

1

ρ
E
{
XT
c DTDXc

}
=

ρ−1∑
l=−ρ+1

C2[l] ·Rdd[l] , (3.15)

where C2[l] is an N ×N matrix containing the covariances between all the input
processes with lag l, i.e., the m,n-th entry of C2[l] is Cov

{
Xr
m, X

r+l
n

}
.

We start by assuming that the input processes are independent white pro-
cesses. We then analyze how auto-correlations and cross-correlations in the input
process affect the design of the optimal delay characteristic, and provide some in-
sights into what shape this function takes when we cannot make any assumptions
on the input processes.

3.4.2.1. White input processes

We start by analyzing the simple scenario where the input processes {Xr
i }

are uncorrelated and white. In that case, we have C2[l] = 0N×N for l 6= 0 and
C2[0] = M2. By using the expansion in (3.15), we get that Σxx = M2 · Rdd[0],
and therefore the optimization problem (3.14) becomes that of looking for the d
that minimizes Rdd[0] subject to the constraints.

This problem can be solved using the method of Lagrange multipliers. Assume
that L is the largest index such that dk = 0 when k > L. We use the fact that
dk ≥ dk+1 (otherwise, there would be another vector d that obtains the same value
of Rdd[0] for less average delay), and that dk ≥ 0 to find that dk = λ1 − λ2 · k
for k ∈ {0, · · · , L}, with λ1, λ2 > 0 and dk = 0 for k > L. This means that the
values of our solution d′opt are points of a straight line with negative slope. We
then use these equations together with the constraints to find that the solution
to this problem is the following:

a) Given an average delay in rounds δ̄, pick L = d3δ̄e.
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b) Then, set

dk =
2

L+ 1

(
L+ 1 + (L− 3δ̄)− k

L+ 2

)
, (3.16)

for k = 0, · · · , L. All the other dk for k > L are set to 0.

We refer to the pool mix implementing this delay characteristic as the ramp pool
mix, due to the shape of the delay characteristic obtained, which we denote by
drmp. It is interesting to note that, when the inputs are white, the optimal delay
function in the sense of maximizing the global MSE is user-independent as it does
not depend on the input moments or the sending behavior of the users. Therefore,
this design is very useful when there is no a priori information about the users.

3.4.2.2. Linear model for auto-correlations

We now assume that we can write the matrix X we observe as X = GX̃, where
X̃ is a matrix containing uncorrelated white processes (as in the previous case)
and G is a convolution matrix with the same structure as D, containing in its first
column the taps of the FIR filter g

.
= [g0, g1 · · · , gρ−1]T . This filter introduces

auto-correlations in the inputs processes of the users. It is straightforward to
show that, in that case,

Σxx =
1

ρ
E
{

X̃T
c GTDTDGX̃c

}
= M2 · (Rdd[l] ∗Rgg[l])|l=0 , (3.17)

where ∗ denotes the convolution operation. Therefore, in this case, the optimal
delay characteristic is the one that, given the constraints, minimizes (Rdd[l] ∗
Rgg[l])|l=0. We can compare this with the previous scenario by looking at the
frequency domain. Let Λdd[k] and Λgg[k] be the coefficients of the ρ-point DFT
of dk and gk, respectively. Assuming that D and G are circulant (the border
effects can be disregarded as ρ grows), the optimal delay function d is the one
that minimizes

(Rdd[l] ∗Rgg[l])|l=0 ≈
1

ρ

ρ−1∑
k=0

|Λdd[k]|2 · |Λgg[k]|2 . (3.18)

We could have solved the previous case (white inputs) following this frequency
analysis, obtaining that the optimal delay characteristic in that case is the one
that minimizes

∑ρ−1
k=0 |Λdd[k]|2 given some delay and normalization constraints.

Now, we have a specific Λgg[k] that depends on the filter taps gk that “colors” the
input processes. The spectrum of the optimal delay characteristic |Λdd[k]|2 will
take smaller values in those frequency bins where |Λgg[k]|2 is larger, and larger
values in those bins where |Λgg[k]|2 is smaller. In that sense, we can see the
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effect of g as an additional constraint in the problem, that causes d to somehow
“whiten” the input processes, while satisfying the constraints of the problem.

In this example, we have assumed that the autocorrelation of all the input
processes is the same, given by the filter g. If we have different autocorrelations
per user (i.e., individual filters g(i) for i = 1, · · · , N), formulating the problem
in the same way we can see that the optimal solution consists on designing a
particular delay characteristic for each user, based on the same idea above.

3.4.2.3. Linear model for cross-correlations

Similar to the previous scenario, we now assume that there is an N × N
matrix S that generates our observation X by making linear combinations of
N uncorrelated white processes in X̃, i.e., X = X̃S. The processes in X are
now white and correlated processes. We assume that matrix S is non-singular,
otherwise LSDA could not be applied directly and we would have to work in a
subspace where the solution is possible. In that case,

Σxx =
1

ρ
ST · E

{
X̃T
c DTDX̃c

}
· S = STM2S ·Rdd[0] , (3.19)

and therefore the solution is again the ramp pool mix obtained in (3.16).

3.4.2.4. Generic input processes

When the observed matrix X cannot be written as a combination of the
examples above, i.e., X = GX̃S, then, besides Rdd[0], other autocorrelation terms
Rdd[k] can take part in the optimization problem. A toy example for this is the
case where we have N = 2 white users, and user i = 2 always sends the same
number of messages user i = 1 has sent in the previous round, i.e., Xr

2 = Xr−1
1 .

This can represent, for example, a user that always replies to each message she
receives in the next round, or a repeater. In this case, Σxx = I2×2 ·Rdd[0] ·µ2(1)+
(12×2− I2×2) ·Rdd[1] ·µ2(1), and we obtain that the optimal delay function is the
one that minimizes Rdd[0] − Rdd[1] subject to the constraints. This results in a
bell-shaped delay characteristic, which is far from the straight line we obtain for
the cases 1 and 3 studied before.

For a generic input process, we cannot find a closed-form solution for the
delay characteristic. We can only expect to find a delay function more similar to
a straight line when the input correlations are small, and a bell-shaped function
when the correlations between the processes are large, or even when they are
small but the number of users is large.
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3.5. Evaluation

In this section, we evaluate the performance of the different delay character-
istics proposed in the previous sections. We build the following pool mixes, that
differ on their delay characteristic:

1. The optimal pool mix, whose delay characteristic is given by the solution
to (3.13), i.e., dopt.

2. The quasi-optimal pool mix, whose delay characteristic is given by the so-
lution to (3.14) when no assumptions on the input processes are made, i.e.,
d′opt.

3. The ramp pool mix, whose delay characteristic, given by (3.16) and denoted
by drmp, is the solution to (3.14) under the assumptions that the input
processes are white and uncorrelated.

4. The binomial pool mix, which has been widely used in the literature and
claimed as the optimal pool mix in terms of anonymity in previous works
[13,83]. The delay characteristic of this pool is denoted by dbin and is given
by dk = α(1− α)k, where α is a parameter between 0 and 1 controlling the
delay of the messages inside the pool.

Each of these designs is assigned a flushing condition and evaluated with real
data, as explained in Section 3.2.3. All the simulations are performed using
Matlab software, including the optimization tools to solve (3.13) and (3.14).

3.5.1. Shape of the Delay Characteristic

We first compare the shape of the delay characteristics of the four pool mix
designs, for different values of the average delay in rounds δ̄. This is shown
in Fig. 3.5. Since dopt and d′opt are different for each input dataset, we plot the
average result in the figure. The gray area represents the maximum and minimum
values obtained for each dk ∈ dopt in the datasets.

The figure confirms that the average shape of the delay characteristic of the
optimal and quasi-optimal designs is very similar for all the values of average delay
δ̄ we test, which confirms our intuitions in Section 3.4.2. It is also worth notic-
ing that these delay functions are non-decreasing and bell-shaped:this happens
because the number of users N in the real datasets we have used for evaluation
is comparable to the number of rounds observed ρ, as explained in [84].

We show in Table 3.3 the variance of the delay of each design (we show
the average variance over all datasets for the optimal and quasi-optimal pool
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Figure 3.5: Comparison between the delay characteristic of different pool mix
designs.

Table 3.3: Expected variance of the delay (in number of rounds) introduced by
each type of pool for different values of average delay.

δ̄ 1 2 3 4 5
Var{dbin} 2.00 6.00 12.00 20.00 30.00

Var{drmp} 1.00 3.00 6.00 10.00 15.00
Var{d′opt} 0.91 2.31 4.08 6.05 8.20
Var{dopt} 0.90 2.23 3.92 5.79 7.84

mixes). Again, the optimal and quasi-optimal designs have very similar variance,
as their shape is almost the same. These pool mixes do not only maximize the
error but also have the smallest variance, which means that, when using them,
users can expect a delay in rounds close to the average value δ̄ for each of their
messages, while for the other types of designs the delay is less predictable. It is
also worth noticing that the variance of the ramp pool mix is half the variance of
the binomial one, which makes the ramp pool mix a more appealing option when
no information about the users is available to the system designer.
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3.5.2. Performance of the Pool Mix Designs

We evaluate the protection that the different pool mix designs offer against
the LSDA adversary. Figure 3.6 shows the global MSE (MSET) obtained by using
the different pool mix designs for different values of average delay (we have omit-
ted the value at δ̄ = 0, as all the pools are equivalent in that case, i.e., d0 = 1).
We can see that the ramp pool mix considerably improves the protection of the
users in the system when compared with the traditional binomial pool mix, but
the optimal and quasi-optimal designs achieve a substantially better result. The
difference between these latter is small, although the optimal pool mix performs
slightly better in every case. For an average delay of δ̄ = 5 rounds, the ratios
between the MSE achieved by the optimal pool mix and the MSE achieved by
the binomial pool mix for each dataset in Fig. 3.6 are, in order, 2.5, 4.4, 2.7, 2.4,
34.3 and 5.0. Since the dependence of the MSE on the number of rounds observed
is 1/ρ, we can also interpret these numbers as ratios on the number of rounds.
For example, in MailingList dataset using a timer with τ = 24h as flushing con-
dition and allowing a maximum average delay of δ̄ = 5 rounds (Fig. 3.6f, ratio
of 5.0), users exchanging messages during a month using a binomial pool mix
would get the same degree of protection against a profiling adversary than users
communicating for 5 months with our optimal pool mix. If we use a threshold
of t = 100 as flushing condition instead, the optimal design allows users to ex-
change messages for almost three years while having more protection than users
exchanging messages for a month with a binomial pool mix. These results high-
light the importance of the delay strategy in the privacy of the system: choosing a
well-designed delay characteristic can make a huge difference in the performance.

3.6. Comparison with Related Work

In this section, we compare our work with other attempts at finding the opti-
mal delay characteristic for a pool mix. There are two works that have performed
this analysis. On the one hand, Danezis analyzes in [13] the delay characteristic
of a continuous pool mix [12], i.e., a pool mix that does not operate in batches or
rounds, but applies to each input process Xi(t) a random delay which can be mod-
eled by a continuous probability density function d(t). However, the experiments
of this paper perform a time discretization, where the mix works in so-called “sim-
ulation tics”. These simulation tics are equivalent to our communication rounds,
so we can consider both scenarios equivalent and apply our analysis here. On the
other hand, Rebollo-Monedero et al. [83] study threshold pool mixes that work
by storing messages and forwarding k of them to their recipients when the pool
contains n ≥ k of them. We have not considered this flushing condition in our
cases of study, as we are considering that the flushing condition is independent
of the current number of messages in the pool, but our framework can easily
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Figure 3.6: Performance of pool mixes in different realistic scenarios and using
different flushing strategies (timed and threshold mixes), as a function of the
average delay (δ̄). Each line represents the overall MSE of LSDA (MSET) using
a different delay characteristic.

accommodate it.

The approach to measure anonymity used by both Danezis [13] and Rebollo-
Monedero [83] is radically different from ours. They use information-theoretic
metrics, mainly Shannon’s entropy, to measure the anonymity of single messages;
while we use an estimation-theoretic approach to measure the error of the adver-
sary when profiling a user. The information-theoretic approach works as follows:
for a target output message, it builds a probability distribution describing the like-
lihood that any input message corresponds with the target output. Anonymity is
then measured as the entropy of this probability distribution: maximal entropy
implies maximum anonymity since it represents the case where the output mes-
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sage is equally likely to have come from each input; and minimal entropy (zero)
indicates minimum anonymity, i.e., that the output message can unequivocally
be related to an input.

Under this anonymity definition, and using Shannon’s result that states that
the distribution that maximizes the entropy when there is a constraint on the
average delay is the geometric distribution (exponential for the continuous case),
both Danezis [13] and Rebollo-Monedero et al. [83] obtain that the binomial pool
mix (called exponential pool mix in the continuous case [13]) is the optimal design,
i.e., the one that maximizes anonymity.

In order to arrive to this conclusion both Danezis and Rebollo-Monedero et
al. make unrealistic assumptions. Danezis assumes that the arrival of messages
follows a Poisson distribution, but it is known that in real scenarios this as-
sumption is not fulfilled (e.g., see [37]). Rebollo-Monedero considers that the
inter-arrival times have a common expectation and variance and they are uncor-
related. In this chapter we have shown that not only these assumptions are not
met by real traffic, but also that the user auto- and cross-correlations have great
impact on the adversary’s error. In fact, the optimal delay function under the
Shannon’s entropy criterion depends on the user behavior statistics, and it is in
general different for each user and/or population.

In order to show that under real traffic conditions the optimality of the bi-
nomial mix claimed in [13,83] does not hold, we compare its performance to the
ramp pool conducting the following experiment described in [13]. We consider
a scenario in which there is only one sender that sends messages to one of only
two possible receivers. These receivers also get messages from other users, from
whom the adversary is not able to see the inputs but knows the distribution of
their messages.

The attack proposed by Danezis is based on a hypothesis test: either the
observed input goes to the first receiver (H0) or to the second (H1). In order
to decide for one of the two, Danezis computes a log-likelihood ratio logLH0/H1 .
Given a threshold η, the adversary decides H0 when logLH0/H1 > η. The choice
of the threshold η depends on the number of simulation tics observed by the
adversary and the desired performance: a low η would increase the probability
of deciding H0 when H0 is true (i.e., increase the true positive rate, TPR) but
it would also increase the probability of incorrectly deciding H0 when H1 holds
(i.e., increase the false positive rate, FPR).

We have implemented this attack and simulated the experiment in Matlab.4

For each value of threshold η, we perform 10 000 repetitions of the experiment
with 1 000 simulation tics and compute the TPR and FPR for both the binomial
pool mix and ramp pool mix (3.16) configured for the same average delay δ̄ = 30

4For a detailed description of this experiment and the parameters used, please see Section 3.2
in [13]. In order to compute the FPR, we have also simulated the H1 scenario.



Chapter 3. Design of Pool Mixes Against Profiling in Real Conditions 69

0 0.1 0.2 0.3 0.4 0.50.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Binomial
Ramp

Figure 3.7: Receiver operating characteristic for Danezis’s classifier in [13], given
1000 simulation tics, for the binomial pool mix and our ramp pool mix.

rounds. We plot in Figure 3.7 the receiver operating characteristic (ROC) curve,
i.e., the TPR versus the FPR obtained, for both designs. We see that the ramp
pool mix outperforms the binomial pool mix since, for any given TPR, the ramp
pool mix always achieves a larger FPR, i.e., the adversary will wrongly choose
H0 when H1 holds more often when the ramp pool is used.

The result of our experiments shows that, even though the binomial pool mix
maximized the information-theoretic measure of sender anonymity introduced
in [30], it is not optimal against the message tracing attack proposed in [13].
The reason is that information-theoretic metrics only consider the probability
distribution of inputs for a given output message, disregarding the distribution of
all the other messages. Hence, they do not reflect adequately how a given input
blends with other incoming traffic, which is key against attacks aiming at tracing
messages.

3.7. Conclusions

In this chapter, we study the design of pool mixes, the basic building blocks
of high-latency anonymous communication systems. We carry out such study
from an estimation-theoretic point of view, deriving a theoretical model for user
behavior, which we validate with real data, and obtaining a mathematical expres-
sion for the estimation error of the best profiling adversary against pool mixes.
We use this estimation error as a metric of privacy, and obtain the delay charac-
teristic of the pool mix that maximizes this metric. Since computing this optimal
design requires a lot of information, we also propose a quasi-optimal solution
which is much easier to compute and to understand, although its application is
more limited. Our work shows that the optimal pool mix design depends on the
users’ behavior, and therefore it is impossible to compute it when no information
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about the users is available. In order to solve this, we also propose the ramp pool
mix, a sub-optimal but user-independent design that is useful when the number
of rounds observed is much larger than the number of users in the system.

We compare the performance of our proposals and the state-of-the-art bi-
nomial pool mix against a profiling adversary, and show that our constructions
substantially increase the protection provided to users. We further show that,
contrary to prior belief [13,83], the binomial pool mix is neither optimal against
message-tracing attacks.



Appendix

3.A. Second-Order Moments of Outputs, Given

the Inputs

Our goal is to derive expressions for the expected value and the second-order
moments of the outputs Y r

j,i given the inputs X. To make the derivations easier, in

this section we use the random variable Ỹ u
j,i, that models the number of messages

sent by sender i in round u, that are addressed to receiver j (but can reach them
in another round, since they may be delayed inside the pool). We also build the
vector ỹ

.
= [ỹ1j,i, ỹ

2
j,i, · · · , ỹρj,i]T . Those messages enter the pool, and leave in that

round or in the subsequent ones. We define Y r,u
j,i as the number of those messages

leaving in round r. Note that Y r
j,i =

∑r
u=1 Y

r,u
j,i . When there is no pool, we also

have Y r
j,i = Ỹ r

j,i. We also use vj,i
.
= pj,i(1− pj,i) and note that vi =

∑M
j=1 vj,i.

We start by building the relations between Ỹ u
j,i and the inputs. These can be

easily established by looking at Fig. 3.2.
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Similarly, it can be shown that
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Now, we show the relations between Y r
j,i and ỹ in the following equations,

where we use that Y r,u
j,i |ỹ and Y r+l,t

j,i |ỹ are uncorrelated for any l when u 6= t:
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Ỹ u
j,i · dr−u . (3.23)

Var
{
Y r
j,i|ỹ
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We can now get the results we were looking for. Combining equations (3.23)
and (3.20), we get E

{
Y r
j,i|X

}
=
∑r

u=1X
u
i dr−upj,i or, in matricial form,

E {Y|X} = D ·X ·P = Ẑ ·P . (3.24)

Likewise, using the law of total variance together with the equations above we
can get closed-form expressions for Var

{
Y r
j,i|X

}
and Cov

{
Y r
j,i, Y

s
j,i|X

}
. These

expressions are too long and we do not need them for the purpose of this thesis,
so we just note that, added along j, they can be written in matricial form as

ΣY|X = diag {DX · 1N} −D · diag {X · r1} ·DT
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(
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T
i ◦Ei

)
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(3.25)

The definition of r1 and r2(i) can be found after (3.12) in Section 3.3.2.
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Chapter 4

Revisiting Location Privacy
Metrics

4.1. Introduction

As we have mentioned in the introductory chapter, Location Privacy Pre-
serving Mechanisms (LPPMs) are designed towards providing a certain notion
of location privacy. In order to optimize their designs, it is important to have
metrics that quantify the amount of location privacy that LPPMs provide. There
is no “correct” or universal location privacy metric, as different applications have
different privacy needs or goals. In the literature, we find two main trends regard-
ing LPPM metrics: works that use the adversary’s correctness as privacy metric,
and works that rely on the geo-indistinguishability privacy notion.

The adversary’s correctness, i.e., how close the adversary’s estimate is to the
correct answer, was recommended by Shokri et al. [51] to evaluate location pri-
vacy. The adversary’s correctness is measured as her expected estimation error,
where this error is modeled using some distance metric between the real location
and the adversary’s estimation [85]. This privacy metric is arguably the most pop-
ular one, since it is intuitive, easy to evaluate, and easy to operate with. Works
that adopt this metric normally consider a Bayesian modeling of the adversary,
i.e., an adversary with some prior knowledge about the user’s movement patterns
that leverages this knowledge to estimate the user’s real locations [46,65–67].

Second, there are approaches that provide privacy guarantees independent
of the adversary’s prior knowledge based on geo-indistinguishability [45]. Geo-

This chapter is adapted with permission from ACM: Simon Oya, Carmela Troncoso, and
Fernando Pérez-González. Back to the drawing board: Revisiting the design of optimal location
privacy-preserving mechanisms. In Proc. of Computer and Communications Security (CCS),
pages 1959–1972. ACM, 2017.
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indindistinguishability is an adaptation of differential privacy [68] to location
privacy, used by a number of works [74, 86, 87]. Geo-indindistinguishability
can be achieved optimally in terms of utility using expensive linear program-
ming [65], or suboptimally using efficient remapping techniques that increase the
utility of the query [67]. Finally, the Bayesian and the geo-indistinguishability
approaches have been combined by Shokri [72] to obtain LPPMs that guaran-
tee geo-indindistinguishability while achieving a good performance against the
Bayesian adversary.

In this chapter, we aim at understanding the properties of the LPPMs output
by these design strategies. We find that, when the target privacy notion is the
adversary’s expected estimation error (i.e., Shokri’s correctness), there are infinite
optimal LPPMs that meet a desired quality loss constraint. While this may
seem advantageous, we show that following such an optimization objective may
result in the selection of naive LPPMs that obviously provide little privacy, e.g.,
alternating the exposure of the actual user location and a far away location.
Indeed, this mechanism complies on average with the constraints of the problem.
Yet, it results on little uncertainty for the adversary, effectively providing a false
perception of privacy.

To counter such effect we argue that, depending on the user’s preferences, the
search for an optimal location privacy-preserving mechanism needs to consider
more criteria than the error, contradicting the belief established by Shokri et
al. [51]. As examples of complementary metrics to guide the design of protec-
tion mechanisms we propose the use of the conditional entropy and a worst-case
bound for quality loss. We provide efficient methods to construct LPPMs with
respect to these criteria, and demonstrate that the remapping method intro-
duced in [67] to improve the utility of geo-indistinguishability-based methods is
in fact a straightforward generic scheme to build an optimal LPPM in terms of
the expected estimation error from any obfuscation mechanism. We evaluate the
effectiveness of several LPPMs according to different privacy criteria using two
real location datasets concluding that, generally, LPPMs that are optimal for one
criterion do not necessarily perform well on others.

To summarize, we make the following contributions:

We provide a theoretical characterization of optimal location privacy-
preserving mechanisms in terms of the mean adversarial error. We show
that, for a given average quality loss, there is more than one optimal LPPM
that maximizes the average privacy. This family of LPPMs forms a convex
polytope in which different LPPMs provide different privacy guarantees.

We demonstrate the limitations of evaluating defenses solely considering the
correctness of the adversary [51], and advocate for the use of complementary
criteria to guide the design of location privacy-preserving mechanisms where
the privacy guarantees provided are better understood.
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Figure 4.1: Abstraction of the location privacy problem in this chapter.

We provide algorithms to efficiently design LPPMs based on criteria other
than the adversary’s error. Furthermore, we demonstrate that remapping,
previously proposed as an enhancement to geo-indistinguishability, is not
only beneficial to improve the utility of this technique but can be used as
a generic method to turn any obfuscation LPPM into optimal in terms of
average adversarial error.

We evaluate prior and new location privacy-preserving mechanisms on two
real location datasets. Our results confirm that it is difficult to find optimal
LPPMs that fare well on all criteria. This demonstrates that previous
approaches to design location privacy-preserving mechanisms, while having
solid foundations, oversimplify the design problem and generate defenses
that overestimate the level of privacy offered to the user.

This chapter is organized as follows. In Section 4.2, we introduce our system
model, and the quality loss and privacy metrics we consider in this chapter. In
Section 4.3 we study the consequences of choosing the average adversary error as
the standard metric to evaluate location privacy, illustrating that LPPMs that
are optimal by this criterion may provide little privacy. In Section 4.4 we propose
to consider auxiliary metrics to avoid bad LPPM choices in the optimization.
As examples, we study the use of the conditional entropy and the worst-case
quality loss. We evaluate several LPPMs built according to these new criteria in
Section 4.5, and offer our conclusions in Section 4.6.

4.2. System Model and Notation

We now describe our system model, which is depicted in Fig. 4.1 and is in
agreement with the framework for location privacy proposed by Shokri et al. [51],
and introduce the notation used throughout the chapter, which is summarized in
Table 4.1.

We consider a set of users that send queries with location information to a
Location Based Service (LBS) in order to obtain a service (e.g., finding points
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of interest or nearby friends). As explained in Sect. 1.2.1, we consider a user-
centric approach to location privacy, i.e., users run their LPPMs locally in their
devices. We also assume that the users make a sporadic usage of the services, e.g.,
use applications that require infrequent location exposure. The location that a
user sends in her queries can be her current location or some other location she
is interested in querying about. Users wish to obtain utility from the location
based service, while keeping their whereabouts private from an adversary that
can observe the locations in the queries, e.g, an eavesdropper of the user-server
communication, or the service provider itself. In order to protect their locations,
users employ a Location Privacy-Preserving Mechanism (LPPM) that perturbs
their location before exposing it to the server. We consider a strategic adversary
that knows the LPPM, and has some knowledge about the users’ movement
patterns. Given the observed perturbed locations and some prior knowledge, the
adversary tries to infer the users’ real locations.

We model the set of locations queried by the users as a discrete set of points
of interest denoted by X .

= {x1, x2, · · · , xN}. We refer to these locations as
real or input locations since they are the actual locations that are input to the
location privacy-preserving mechanism. We characterize user mobility using the
mobility profile π. We use π(x) to denote the prior probability that a user
in the population queries the service provider about location x (π(x) ≥ 0 and∑

x∈X π(x) = 1). The mobility profile can either represent the global behavior of
all the users as in [67], or be tailored to a particular user, but we assume that it
is known both by the user and the adversary and that it can be used to design
the LPPM. We also consider independence between queries, i.e., that the input
locations x from the same or other users are samples form i.i.d. random variables
given by π.

The set of possible locations reported by the LPPM is denoted by Z. We
assume that users can report any location in the world Z = R2. We refer to these
locations as output locations, as they are the outputs of the privacy-preserving
mechanism. The LPPM itself is denoted by f and modeled as a set of (continuous)
conditional probability distributions, where f(z|x) denotes the probability density
function (pdf) of reporting the output location z ∈ R2 when the real location of
the user is x ∈ X (note that f(z|x) ≥ 0 and

∫
R2 f(z|x)dz = 1 for all x ∈ X ).

We represent discrete LPPMs, i.e., LPPMs with a discrete output domain, in
R2 with the Dirac delta function δ. For example, the LPPM that maps any
x ∈ X to two particular outputs z1, z2 ∈ R2 with the same probability would be
f(z|x) = 0.5δ(z − z1) + 0.5δ(z − z2). For integration purposes, δ(z − z′) must be
understood as a two-dimensional Gaussian pdf centered at z′ whose variance is
arbitrarily small.

When using an LPPM f to obtain privacy, the user experiences a loss on the
quality of service due to the fact that she reports a location that might not be the
location of interest, and may even be far away from this one. We use P(f, π) to
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Table 4.1: Summary of notation

Symbol Meaning

x Input location the user is interested in querying about.
X Set of valid input locations or points of interest.
z Output location released by the LPPM, z ∈ R2.
x̂ Adversary’s estimation of the input location, x̂ ∈ R2.
π(x) Prior probability that a user wants to query about x.
f(z|x) LPPM, characterized as the pdf of z ∈ R2 given x ∈ X .
fZ(z) Pdf of z, i.e., fZ(z) =

∑
x∈X π(x) · f(z|x).

p(x|z) Posterior probability of x given z.

dQ(x, z) Quality loss distance function between x and z.
Q Average quality loss metric, in (4.1).
Q+ Worst-case quality loss metric, in (4.2).

dP (x, x̂) Privacy distance function between x and x̂.
PAE Average error privacy metric, in (4.5).
PCE Conditional entropy privacy metric, in (4.9)
PGI Geo-Indistinguishability privacy metric, in (4.11)

denote the privacy of the user, and Q(f, π) to denote her quality loss. We specify
particular instantiations of these functions below.

4.2.1. Quality Loss Metrics

We consider two possible definitions of quality loss: the average loss, and the
worst-case loss. To this end we introduce dQ(x, z), a function that quantifies
how much quality of service is lost by a user reporting output location z when
she is interested in input location x. Larger values of dQ(x, z) indicate a larger
loss, and therefore a worse utility performance for the user. The canonical choice
for this function is the Euclidean distance: dQ(x, z) = ||x− z||2. Note that dQ(·)
does not need to be a metric in the mathematical sense: it could be any function
that maps an input location and a released location to a loss value (e.g., a
feeling-based utility metric as in [64,88]).

Average Loss. The average loss measures how much quality a user loses on
average, and can be written as:

Q(f, π) =
∑
x∈X

∫
R2

π(x) · f(z|x) · dQ(x, z) dz . (4.1)

This metric has been the typical choice of utility in the related litera-
ture [45, 46, 65–67] since it is very intuitive. This metric also has the advantage
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of being linear with the LPPM f , which is very useful towards reducing the
computational cost of LPPM design algorithms. Moreover, it makes the analysis
of optimal algorithms in terms of average loss tractable.

Worst-case Loss. Given a function that quantifies the point-wise loss as defined
above, dQ(x, z), the worst-case loss is defined as:

Q+(f, π) = max
x,z

π(x)>0
f(z|x)>0

dQ(x, z) . (4.2)

The worst-case loss measures how much utility the user loses in the worst case
possible. For example, if dQ(x, z) is the Euclidean distance and the user wants
to query about x, an LPPM with Q+(f, π) ≤ 2km ensures that the output z will
not be further than 2km away from x. This property is very helpful for many
applications that target nearby-type of services, since if the reported location is
very far from the desired location then the result of the query would be generally
useless for the user.

4.2.2. Privacy Metrics

We present now three notions of privacy: the average adversary error, the
conditional entropy of the posterior distribution, and geo-indistinguishability.

Average Error. The average error is the de-facto standard to measure location
privacy since Shokri et al. [51] argued that incorrectness determines the privacy
of users. Consider that the adversary knows the mobility profile π and the LPPM
f chosen by the user. With this information, she produces an estimate x̂ ∈ X̂
of the user’s input location x. The choice of X̂ depends on the computational
power of the adversary. Since we assume that the user has the freedom to report
any location in R2, we also assume an unbounded adversary that can estimate
locations on the whole world X̂ = R2. Upon observing z, the adversary can build
a posterior probability mass function over the inputs, denoted as p(x|z):

p(x|z) =
π(x) · f(z|x)∑

x′∈X π(x′) · f(z|x′) . (4.3)

Let dP (x, x̂) be a function that quantifies the magnitude of the adversary’s error
when deciding that the input location was x̂ when the input location is actually x.
As in the case of the average loss Q, this function dP (·) does not necessarily need
to be a metric (e.g., it can include the user sensitivity to an adversary learning
semantic information such as in [64]). Given an output location z, the optimal
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decision for the adversary in terms of minimizing the average error is

x̂(z) = argmin
x̂∈R2

{∑
x∈X

p(x|z) · dP (x, x̂)

}
. (4.4)

The average adversary’s error, or just average error, is defined as the mean
error incurred by an adversary that chooses the estimation x̂ optimally given each
observed z. Let fZ(z) =

∑
x∈X π(x) · f(z|x) be the probability density function

of z. Then, the average error is:

PAE(f, π) =

∫
R2

fZ(z)
∑
x∈X

p(x|z) · dP (x, x̂(z)) dz (4.5)

=

∫
R2

min
x̂∈R2

{∑
x∈X

π(x) · f(z|x) · dP (x, x̂)

}
dz . (4.6)

Note that LPPMs designed with PAE inherently protect against a strategic
adversary, since the metric embeds the adversary’s estimation. This metric has
been used as part of the design objective in previous works [46,51], and as a way
of comparing the performance in terms of privacy of LPPMs designed with other
different privacy goals in mind [45,65–67].

Conditional Entropy. The conditional entropy is an information-theoretic met-
ric that can be used to measure the adversary’s uncertainty about the user’s real
location when z is released. After observing z, the adversary builds the posterior
p(x|z) using (4.3). The uncertainty of the adversary regarding the value of x
given z can be measured as the entropy of this posterior:

H(x|z)
.
= −

∑
x∈X

p(x|z) · log(p(x|z)) . (4.7)

The conditional entropy measures the average entropy of the posterior after z is
released. Formally,

PCE(f, π) =

∫
R2

fZ(z) ·H(x|z)dz , (4.8)

where fZ(z) is the probability density function of z, and H(x|z) is a function
of z as defined in (4.7). Alternatively, using only the mobility profile π and the
LPPM f , the conditional entropy can be written as

PCE(f, π) = −
∑
x∈X

∫
R2

π(x) · f(z|x) · log

(
π(x) · f(z|x)∑

x′∈X π(x′) · f(z|x′)

)
dz . (4.9)

Note that this metric does not depend on the geography of the problem, i.e., on
the particular values of x or z. If we use the base-two logarithm in the formula,



82 4.2. System Model and Notation

then PCE can be interpreted as how many bits of information the adversary
needs on average to completely identify x. This metric was disregarded as a
possible privacy metric in [51] due to being uncorrelated with the average error.
In this chapter, we challenge such conclusion showing that considering solely
the correctness of the adversary may lead to the design of LPPMs that offer
low privacy. We show in Section 4.4 how using the conditional entropy as a
complementary privacy metric helps to avoid choosing those undesirable LPPMs.

Geo-Indistinguishability. Geo-indistinguishability is an extension of the con-
cept of differential privacy, originally a notion of privacy in databases, to the
location privacy scenario. It was originally proposed in [45] and other works have
continued the research on this line [65–67]. Formally, ε-geo-indistinguishability
requires the following condition to be fulfilled by a location privacy-preserving
mechanism f ,∫

A

f(z|x)dz ≤ eε·dP (x,x′) ·
∫
A

f(z|x′)dz , ∀x, x′ ∈ X ,∀A ⊆ R2 . (4.10)

This requirement ensures that given an area A ⊆ R2, the probability of reporting
a point z in that area if the original location was x over any other location x′

within some distance around x, is similar, and therefore x and x′ have some
degree of statistical indistinguishability. In this definition, dP (x, x′) is a function
that quantifies how indistinguishable x and x′ are: smaller values of dP (x, x′)
indicate a higher indistinguishability, as the constraint becomes tighter. The
privacy parameter in this definition is ε: larger values of ε indicate a looser
constraint that allows f(z|x) and f(z|x′) to be more different, and therefore x
and x′ become more distinguishable. Smaller values of ε force the probability
density functions f(z|x) and f(z|x′) to be closer, providing more privacy. Note
that, if for a single input location x there is a positive probability of reporting the
output in a region A ⊆ R2,

∫
A
f(z|x)dz > 0, then that must also be true for every

other input location x′. Also, note that geo-indistinguishability is independent of
the mobility profile π.

The typical choice of dP (x, x′) in geo-indistinguishability is the Euclidean
distance [45, 65]. Many geo-indistinguishability LPPMs rely on the fact that
dP (x, x′) is a metric (specifically, in the fact that it satisfies the triangular in-
equality dP (x, x′) ≤ dP (x, z) + dP (x′, z)) to prove that they meet the condition
in (4.10).

Although geo-indistinguishability is generally considered a privacy guarantee
and not itself a metric, we can adapt it to represent an equivalent concept to our
generic metric P(f, π). Given an LPPM that provides ε-geo-indistinguishability,
it is straightforward to see that it is also ε′-geo-indistinguishable if ε′ > ε.
Since a smaller ε denotes more privacy, it makes sense to define the geo-
indistinguishability level provided by an LPPM f according to the smallest ε it
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guarantees. Also, since we are defining P(f, π) as a magnitude that grows with the
protection of the users, we choose to define our measure of geo-indistinguishability,
PGI(f), as the inverse of the smallest ε guaranteed by the LPPM. Given the LPPM
f , we write

PGI(f) = inf
x,x′∈X
z∈R2

dP (x, x′) ·
∣∣∣∣log

f(z|x)

f(z|x′)

∣∣∣∣−1 , (4.11)

where we assume by convention that log(0
0
) = 0 and that dP (x, x′) = ||x − x′||2

is the Euclidean distance. Larger values of PGI indicate more privacy, and the
LPPM guarantees 1/PGI-geo-indistinguishability.

4.3. Limitations of the Expected Adversary Er-

ror Based Evaluation

The most standard way to assess the location privacy provided by two LPPMs
has been the evaluation of the trade-off between their average adversary error PAE

and their average loss Q. The use of the average error as yardstick for location
privacy was proposed in [51] under the general notion of correctness, and its
use as a way of comparing LPPMs was followed by many of the subsequent
works [45, 46, 64–67]. The choice of distance functions dP (·) and dQ(·) for both
the average error and the average loss in these works is mostly the Euclidean
distance [45, 46, 64, 65, 67] although some of them also consider the Hamming
distance [46,51,65] or semantic distances for privacy [64,66].

In this section, we show the problems that stem from this established 2-
dimensional evaluation approach. We start by studying the properties of LPPMs
that are optimal according to these two metrics. Then, we introduce a new LPPM
that we call the coin mechanism, and use it as an example that brings to light the
flaws of judging the privacy of an LPPM by its performance in terms of average
error and average loss.

4.3.1. Study of the Established LPPM Evaluation

We start our analysis by assuming that the choice of distance functions dP (·)
and dQ(·) is the same for simplicity, which is a typical choice in related works
(e.g., both are the Euclidean distance). We denote this by dP (·) ≡ dQ(·). At the
end of the section, we argue what happens when this is not the case. We also
introduce two definitions. First, let FQ be the set of all the LPPMs that achieve
an average loss smaller or equal than Q. Formally,

FQ
.
=
{
f |Q(f, π) ≤ Q

}
. (4.12)
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Also, let Fopt
Q ⊆ FQ be the set of all LPPMs f ∈ FQ that are optimal in terms

of average adversary error, i.e.,

Fopt
Q

.
= {f | f ∈ FQ , PAE(f, π) ≥ PAE(f

′, π) ∀f ′ ∈ FQ} . (4.13)

We call an LPPM inside Fopt
Q optimal, since it achieves as much privacy as possible

among all the LPPMs with the same quality loss. We state the following lemma:

Lemma 4.3.1. The set of optimal LPPMs with respect to the average privacy
PAE and the average loss Q is a convex polytope.

Proof. Let the privacy achieved by any LPPM in Fopt
Q be Popt(Q). Then, we can

define this set as

Fopt
Q = {f |PAE(f, π) = Popt(Q), Q(f, π) ≤ Q} , (4.14)

and since PAE(f, π) and Q(f, π) are linear operations with f , (4.14) can be written
as an intersection of half-spaces, which forms a convex polytope.

Note that the proof also applies to the case where dP (·) 6≡ dQ(·) (e.g., privacy
as the average Hamming error of the adversary and quality loss as the average
Manhattan distance). The same outcome can be derived for the conditional
entropy and geo-indistinguishability, although we leave those results out of the
scope of this work.

This lemma shows that there is a family of optimal LPPMs that lie inside a
convex polytope, instead of just a single LPPM. All of them provide the same
(maximal) privacy for the same quality loss constraint so, in principle, they are
equally useful. In what follows, we show why this is not the case.

We start by introducing the concept of remapping. A remapping g is a func-
tion g : R2 → R2 that maps an output z ∈ R2 to another output z′ ∈ R2 according
to the probability density function g(z′|z). It is well known that if we generate
an LPPM f ′ = f ◦ g =

∫
R2 g(z′|z) · f(z|x)dz, then the privacy of f ′ in terms of

average error, conditional entropy or geo-indistinguishability is not smaller than
that of f . This is reasonable, as the remapping g is independent from x, and thus
it does not reveal any information about it. The optimal Bayesian remapping is
defined as follows:

Optimal remapping: Given an LPPM f , its optimal remapping is the one that
minimizes the average loss of the composition f ′ = f ◦g, i.e., g(z′|z) = δ(z′−r(z)),
where

r(z) = argmin
z′∈R2

∑
x∈X

π(x) · f(z|x) · dQ(x, z′) . (4.15)

This remapping assigns each location z to the location r(z) in (4.15), and is
used in [67] as a way of improving the utility of geo-indistinguishability LPPMs.
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Now, we show that it can also be used not only to reduce the quality loss of
LPPMs but to achieve optimal LPPMs in terms of average error privacy:

Theorem 4.3.2. Let g be an optimal remapping for f , and let f ′ be the composi-
tion f ′ = f ◦ g. If dP (·) ≡ dQ(·), then f ′ is an optimal LPPM, i.e., f ′ ∈ Fopt

Q(f ′,π)
.

The proof is in Appendix 4.A.

This theorem provides a straightforward way of building an optimal LPPM
f ′ from any LPPM f . The idea is to reassign each output z of f to another
symbol z′ such that the average quality loss is minimized. Doing this for every
output ensures that the quality loss cannot be further reduced, and since the
distance function used to evaluate quality loss and privacy is the same, the best
estimation the adversary can do of x is just to keep the released value. Note that
the Q(f ′, π) ≤ Q(f, π). This means that, in order to find an optimal LPPM f ′

for a target quality loss Q(f ′, π) = Q using the remapping strategy, one has to
adjust the loss of the LPPM f (e.g., by tuning its variance if it is a noise-based
LPPM) until f ′ achieves the desired average loss Q.

It is straightforward to see that, if the optimal remapping for an LPPM f is
just doing nothing, then it means f is optimal:

Corollary 4.3.2.1. If the optimal remapping in (4.15) for an LPPM f is
g(z′|z) = δ(z′ − z), then f is optimal for its quality loss Q, i.e., f ∈ Fopt

Q .

This is a very convenient way of proving the optimality of an LPPM when
dP (·) ≡ dQ(·). Another way of seeing that such LPPM is optimal, is by realizing
that with this choice of metrics, the privacy is upper bounded by the quality loss
PAE(f, π) ≤ Q(f, π), and the upper bound is indeed achieved when an optimal
LPPM is used. We note that the fact that PAE(f, π) = Q(f, π) for optimal LPPMs
is not new, as it was already mentioned in [45] about the LPPMs in [46].

4.3.2. The Coin Mechanism

We now discuss the following LPPM, which we call the coin mechanism, and
prove that it is optimal. Let z∗ be the output location that minimizes the average
quality loss of an LPPM that always reports that location regardless of the input
x. Formally,

z∗
.
= argmin

z∈R2

∑
x∈X

π(x) · dQ(x, z) . (4.16)

As an example, if we measure the point-to-point loss as the mean squared error
dQ(x, z) = ||x − z||22, then z∗ will be given by the mean z∗ =

∑
x∈X π(x) · x. If

the loss is measured as the Euclidean distance, then z∗ is the geometric median
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of π. Given a generic distance function dQ(·), the optimal output location z∗ can
be computed by solving the optimization problem in (4.16).

Let Q∗ be the average quality loss achieved by an LPPM that always reports
z∗ regardless of the input. We construct the following LPPM, which we denote
fcoin. First, we fix a desired quality loss Q ≤ Q∗ and compute α

.
= 1 − Q/Q∗.

Then, we build

fcoin(z|x) = α · δ(z − x) + (1− α) · δ(z − z∗) , (4.17)

where z∗ is in (4.16). This LPPM can be easily explained and implemented
simulating a coin flip. We first set our desired quality loss Q ≤ Q∗. Note that
it would not make sense to fix Q to a value larger than Q∗ since we would not
achieve more privacy by doing so; an LPPM that always reports z∗ and has an
average loss of Q∗ yields the highest privacy allowed by π. Then, we compute
α = 1 − Q/Q∗ and set it as the probability that our coin shows heads. Assume
we are interested in querying about a location x ∈ X , so we flip the coin. If the
coin shows heads, then we report our desired location z = x. If the coin hits tails,
then we report z∗ regardless of the value of x. It is easy to see that the average
loss of (4.17) is indeed Q, by the linearity of this metric with f .

Proposition 4.3.1. The coin mechanism obtained for quality loss Q achieves
the maximum average adversarial error possible given a constraint on the average
quality loss, i.e., fcoin(Q) ∈ Fopt

Q , if both are measured with the same distance
function dP (·) ≡ dQ(·).

The proof is straightforward using the result in Corollary 4.3.2.1.

We now reason why, even though the coin mechanism is optimal by the stan-
dards that have been used to evaluate privacy in prior works (i.e., PAE and Q),
this LPPM is hardly desirable for any user. When the coin shows heads, the
adversary observes z. If z 6= z∗, the adversary knows for sure that the user was
interested in querying about x = z and therefore the user has no privacy at all.
In this case, for privacy issues, there was no point in using the LPPM. When the
coin shows tails, the user is mapped far away to z∗. The adversary observes z∗

and has no idea where the user is, besides the mobility profile π that was already
known by her. In this case, the privacy of the user is maximal, but the quality
loss is very large, since z∗ is almost always very far away from the user. The
quality loss is so large that the utility the user gets from this realization of the
LPPM can be considered zero, so we can say that there was no point in using the
LPPM in this case either. We have reached the issue we mentioned earlier: there
is an LPPM, optimal by classic location privacy standards [51], that is useless
both from the privacy and the quality loss point of view. This shows that there
is a fundamental problem with the classic way that has been used to evaluate
location privacy mechanisms.
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4.3.3. The Reach of This Problem

One could think that the problem of this bi-dimensional evaluation approach
lies on the fact that one cannot use the same metric to measure quality loss
and privacy, e.g., the Euclidean distance. However, even with different metrics,
LPPMs similar to the coin can be derived. For example, if privacy is the aver-
age mean squared error and quality loss is measured as the average Manhattan
distance (i.e., the l1 norm), a deterministic LPPM that consists on reporting the
real location on most of the places and mapping to the other side of the Earth in
some others is optimal, due to the fact that the MSE grows quadratically with
the distance, while the l1 (or any lp norm) does not. In our evaluation, we show
an example where an LPPM optimized for PAE and Q with a different pair of dis-
tance functions dP (·) 6= dQ(·) suffers from the coin issue. The problem does not
arise from the particular distance functions dP (·) and dQ(·) one uses to evaluate
the average error and loss, but from the fact that these metrics are averages, and
as such they do not restrict the minimum privacy of a single use of the LPPM
or the maximum quality loss of the LPPM, they just ensure that the average is
good. We believe that, while evaluating the average behavior of an LPPM is not
an erroneous notion per-se, it must be handled with care to avoid undesirable
results, such as the coin mechanism.

As a concluding remark, we would like to note that we have shown this prob-
lem assuming that the outputs of the LPPM and the values estimated by the
adversary are points in R2, for notational simplicity and generality. An impor-
tant fraction of previous works [46,51,64–66] assume a discrete model where the
set of output values Z and estimated values X̂ are the centers of a grid over the
map or points of interest such as X . In these scenarios, one can derive a similar
LPPM, where hitting tails means that the user reports the location out of the
allowed ones that minimizes the average error. That LPPM can also be shown
to be optimal in terms of average error and loss, although it is not a desirable
LPPM for any user. For completeness, we also evaluate this scenario in our ex-
periments. The same applies to the case where instead of having discrete input
locations X , users can report any point in R2 (for example, a tracking or a date
finder application). The coin mechanism in (4.17) can be applied directly to this
scenario, and it can be shown to be optimal (changing the summations over X
to integrals). It is clear that using the traditional evaluation approach has flaws
in all these scenarios and we must find a solution to this.

4.4. Complementary LPPM Evaluation Criteria

So far we have seen that evaluating LPPMs based solely on the average error
and quality loss does not reflect whether an LPPM is actually more beneficial
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than another one, due to the fact that some undesirable LPPMs are deemed
optimal by this approach. In this section, we propose a solution to this evaluation
procedure that consists in incorporating complementary evaluation criteria that
add different perspectives to the performance of an LPPM in terms of privacy
and quality loss.

We propose two metrics, that are not intended to be used as a replacement
of the average error and average loss but in combination with them, adding new
dimensions to the privacy vs. quality loss trade-off. The first metric we propose is
the conditional entropy, a privacy metric that helps detecting inconsistent LPPMs
such as the coin. The second one is the worst-case loss, a quality loss metric that
provides a way of staying out of LPPMs that might yield no utility for the user at
all. We comment on the implementation of LPPMs that take these metrics into
consideration, and propose an LPPM that maximizes the conditional entropy
while being optimal in terms of average error and quality loss. We finish the
section describing other alternative privacy metrics.

4.4.1. The Conditional Entropy as a Complementary
Metric

4.4.1.1. Usefulness of the Conditional Entropy

One of the problems of the coin mechanism can be seen from an information-
theoretic point of view. The coin is a binary LPPM, in the sense that each input
location can only be mapped to itself or to a fixed point in the map. From the
adversary’s perspective, this means that if the coin shows heads the adversary
has no uncertainty at all about the user’s input location, and if it shows tails
the uncertainty is maximal. The conditional entropy can be used to detect these
scenarios where the adversary has no uncertainty about x. Recalling (4.8), the
conditional entropy can be written as

PCE(f, π) =

∫
R2

fZ(z) ·H(x|z)dz , (4.18)

where H(x|z)
.
= −∑x∈X p(x|z) · log(p(x|z)) is the entropy of the posterior after

a location z is released. It is clear that (4.18) is an average over the entropy of all
the posteriors. However, contrary to the average error, the conditional entropy
is an average over functions H(z|x) that are strictly concave with f . This means
that in order to perform well in terms of the conditional entropy, an LPPM must
spread its uncertainty among every posterior p(x|z) instead of achieving maximal
uncertainty with some outputs and zero uncertainty with others, as the coin does.

Another interesting property of the entropy is that it is not a geographical
metric. The entropy of a posterior H(x|z) does not depend on the coordinates of
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the input locations or the semantic information tied to them (e.g., if the location
is a hospital or a club). The entropy only depends on how evenly the posterior
is distributed among the input locations. This probabilistic aspect of privacy,
defined as uncertainty in [51], cannot be captured by other privacy notions such
as correctness (e.g., the average adversary error). Due to the geographic nature
of the location privacy problem, we cannot judge an LPPM based solely on its
entropy. However, using it as an additional dimension of privacy gives a more
complete picture of the performance of an LPPM.

We would like to point out that this notion of uncertainty provided by the
entropy was disregarded as a reasonable privacy metric in [51] based on the fact
that, since it is not correlated with the adversary error, it does not capture how
hard is for the adversary to estimate the real input location. We claim that it is
indeed the fact that the entropy is not correlated with the adversary error which
gives it a special value as a complementary metric of privacy. The same way that
semantic location privacy metrics have been proposed together with geographic
metrics [64, 66] to give different perspectives on the problem, the conditional
entropy is a tool that gives valuable information about the protection provided
by the LPPM not captured by the average error.

We would like to make two remarks regarding the entropy. First, the con-
ditional entropy PCE(f, π) must be taken into account together with the mutual
information I(X;Z) to get a full picture of the information-theoretic properties
of the LPPM. The conditional entropy represents the average amount of uncer-
tainty the adversary has about the real location x after observing z. A small
value of conditional entropy indicates low uncertainty, and therefore we might
get the impression that an LPPM with such small value provides low privacy.
However, it might have been possible that the entropy of the mobility profile was
already low, and therefore even if the LPPM was perfect from the privacy point
of view (i.e. it did not reveal any information, I(X;Z) = 0), there is nothing
any LPPM could have done to avoid having a low conditional entropy. We must
therefore take into account the mutual information or, equivalently, the entropy
of the mobility profile π, when interpreting the value given by the conditional
entropy.

The second remark is that the conditional entropy must not be tailored to a
particular adversary with a possibly wrong knowledge of the mobility profile π.
In this chapter, we have assumed that the mobility profile π models the choice
of input locations by the users, and therefore the correct way of computing the
entropy is by using π in the formulas above. This entropy must be regarded as
the uncertainty that a very strong passive adversary with full knowledge of the
behavior of the users would have when observing z.
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4.4.1.2. Implementation of LPPMs with Large Conditional Entropy

We now look for an LPPM that is optimal in terms of the average error and
average loss, i.e., an LPPM in Fopt

Q , that also achieves as much conditional en-
tropy as possible. This problem is equivalent to the rate-distortion problem [89]
of finding a pdf f(z|x) that minimizes the mutual information between x and z
subject to a quality loss constraint, which can be solved iteratively by implement-
ing the Blahut-Arimoto algorithm. For this, we must first restrict our output to
a discrete alphabet Z for computational reasons. The more points we assign to
this alphabet and the more evenly we cover the space where we want to compute
the LPPM with them, the better its performance will be. Since both the input
and output domains are discrete, the LPPM is determined by the probabilities of
reporting z when the user is in x, that we denote by p(z|x) here for clarity. We
start with an initial LPPM, for example uniform mapping p(z|x) = 1/|Z|. Then,
we perform the following steps:

1. We compute the probability mass function of each the output:

PZ(z) =
∑
x∈X

π(x) · p(z|x) , ∀z ∈ Z . (4.19)

2. We update the LPPM as follows:

p(z|x) = PZ(z) · e−b·dQ(x,z) , ∀x ∈ X , z ∈ Z. (4.20)

3. We normalize the LPPM:

p(z|x) =
p(z|x)∑

z′∈Z p(z
′|x)

, ∀x ∈ X , z ∈ Z. (4.21)

We skip this step for the outputs z with PZ(z) = 0.

4. We repeat these steps until the change in the probabilities p(z|x) is below
some threshold.

The value of b in the second step needs to be tuned to change the quality loss
of the LPPM Q(f, π) and cannot be pre-computed to achieve an exact value of
average loss. Larger values of b yield LPPMs with less quality loss, and therefore
less average error privacy and less conditional entropy. Finally, we obtain our
LPPM f(z|x) by applying the optimal remapping to the discrete LPPM defined
in X → Z by the probabilities p(z|x). This ensures that the resulting LPPM is
optimal from the adversary error privacy point of view.

We make two remarks regarding this algorithm. The first one is about its
computational cost. The operations in the three steps above are not expensive as
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they only include multiplications and additions. The number of elements we need
to compute in order to build p(z|x) is N

.
= |X | · |Z|. The first step above consists

of N products and additions. In the second step e−b·dQ(x,z) can be precomputed
as b, X and Z do not change during the algorithm, so we only have to make N
multiplications, and in the third step we compute |X | values of

∑
z′∈Z p(z

′|x) and
then perform N divisions. It is clear then that the cost grows with the sizes of
X and Z. However, the algorithm only needs to be computed once for all the
users, which can be done in the cloud, and even if the mobility profile π varies we
can use a previously computed algorithm as initialization of the iteration above
to get a fast update of the LPPM.

The second remark is that the LPPM produced by this algorithm also satis-
fies 2b-geo-indistinguishability (the proof is in Appendix 4.B). This is a byproduct
property that was not part of the reasoning behind the algorithm and it does not
imply that the conditional entropy and geo-indistinguishability are related. In
fact, these are fundamentally different notions: the former is an average metric
that only considers the probabilistic (and not the geographic) aspect of the prob-
lem, while the latter is a worst-case metric that also considers the geography of
the problem. Also, if we truncate the optimal conditional entropy LPPM, we
obtain an LPPM that is almost optimal in terms of conditional entropy but does
not provide any level of geo-indistinguishability.

We evaluate this LPPM and others with respect to the conditional entropy
and the traditional metrics in Section 4.5.

4.4.2. The Worst-Case Quality Loss as a Complementary
Metric

4.4.2.1. Usefulness of the Worst-Case Quality Loss

After analyzing the privacy problems of the coin mechanism, we now turn to
the utility point of view. The great drawback of the coin mechanism from the
quality loss perspective is that if the coin shows tails then the server’s response to
the user’s query will most likely be useless due to the great quality loss incurred by
reporting z∗. We can think of many applications where, if the Euclidean distance
between x and z is larger than a certain value, the user gets literally nothing
from the server response. For example, if we are close to a point of interest x
and we want to find a nearby hospital, querying about a location z in another
city will likely return a useless response from the server. In that case, we could
think of generating another output and query the server again because we did not
get what we were hoping for. By doing so, the privacy properties of the LPPM
change, and in the case of the coin it is equivalent to always revealing our true
location.
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A solution to this utility issue consists in imposing a worst-case quality loss
constraint on the LPPM, i.e.,

Q+(f, π) = max
x,z

π(x)>0
f(z|x)>0

dQ(x, z) ≤ Q+
max . (4.22)

To put it simply, we want an LPPM that releases output locations within Q+
max

from the input location, i.e., a bounded LPPM. The upper bound Q+
max would

be tuned depending on the application in question, so that a user never gets a
worthless result. When used together with the average error and the average loss,
the worst-case loss metric reveals those LPPMs we might want to avoid using. It
is easy to see that the coin mechanism, although optimal in terms of PAE and Q,
gives a very large value of Q+(fcoin, π), which manifests its uselessness.

An interesting consequence of setting a maximum worst-case quality loss con-
straint when designing an LPPM is that it can simplify the computational cost of
the protocol that implements or computes it. For example, take the case of the
works in [46, 65], where authors assume a discrete set of output locations Z and
propose to solve a linear program to find an optimal LPPM (in terms of average
error and geo-indistinguishability, respectively). The constraint in (4.22) reduces
the amount of variables that need to be computed in these programs (only a
subset of Z are possible outputs for each input x ∈ X ), as well as the amount
of constraints, which in turn decreases drastically the computational cost of the
problem. In other implementations of LPPMs, where f is not explicitly derived
but computed by adding (continuous) noise and then computing a remapping
using the posterior (c.f. [67]), having a worst-case quality loss constraint reduces
the amount of inputs that need to be considered when computing the posterior,
effectively reducing the computational cost of the algorithm.

Finally, we would like to note that this metric exposes a basic problem
with geo-indistinguishability LPPMs. As mentioned before, when using a geo-
indistinguishability LPPM, if a user with input location x has non-zero probabil-
ity of reporting z ∈ A ⊆ R2, then when the input location is any other x′ ∈ X
she must assign a non-zero probability to reporting z ∈ A. This means that for
any geo-indistinguishable LPPM f , the worst-case quality loss metric Q+(f, π)
gives a huge value and the probability of getting a useless response from the
server would be larger than zero. One could argue that, given the nature of the
geo-indistinguishability guarantee, the probability of reporting a location z far
from x is low and decreases exponentially with the distance between them, so we
could disregard such an event from happening. However, if we really truncate the
LPPM to ensure that the probability of going very far is zero, then the LPPM
does not provide any geo-indistinguishability guarantee at all. It is then clear
that geo-indistinguishability LPPMs are problematic from the quality loss point
of view, and if a user gets zero utility from a realization of the LPPM she cannot
re-use it immediately, otherwise the privacy guarantee is violated. We comment
on a possible solution to this problem below.
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4.4.2.2. Implementation of LPPMs with Worst-Case Quality Loss
Constraint

Now we set the task of designing an LPPM that achieves a good value of
worst-case quality loss or, alternatively, that ensures that the worst-case quality
loss is below some bound Q+(f, π) ≤ Q+

max. The straightforward approach, given
an LPPM f , is to truncate the LPPM (for example, by generating samples of z
until one of them ensures that dQ(x, z) ≤ Q+

max, and then releasing that z). This
approach is reasonable, but one must take into account that the privacy properties
of this new truncated LPPM f ′ are not the same as the original LPPM f , and
therefore they must be re-evaluated.

Another issue that concerns the design of bounded LPPMs is that a determin-
istic remapping (4.15) might violate a Q+ constraint (i.e., even if f guarantees
the Q+ constraint, a composition f ′ = f ◦ g might not guarantee it). Find-
ing a bounded LPPM that achieves as much privacy as an unbounded one in
Fopt

Q can be an impossible task, due to the fact that the polytope defined by

Q+(f, π) ≤ Q+
max might be disjoint with Fopt

Q . However, we can lose some privacy
with respect to an optimal unbounded LPPM in exchange for a better worst-case
quality loss guarantee by enforcing the bounding constraint Q+(f, π) ≤ Q+

max.

4.4.3. Other Complementary Metrics

Now, we finally outline other metrics that can be used together with the
average error and average quality loss to assess the privacy of LPPMs, and leave
the development of LPPMs taking them into account as subject for future work.

Geo-indistinguishability (4.10) inherently ensures that an input location x
is mapped to a nearby location with more probability than to a far location,
which solves the privacy issue we illustrated with the coin mechanism. However,
this privacy notion is not compatible with a worst-case quality loss constraint
by definition, due to the fact that f(z|x) > 0 implies f(z|x′) > 0, ∀x′ ∈ X . A
possible approach to solve this utility issue of geo-indistinguishability can be to
relax its definition, allowing a small tolerance value ∆� 1, i.e.,∫

A

f(z|x)dz ≤ eε·dP (x,x′) ·
∫
A

f(z|x′)dz + ∆ ,
∀x, x′ ∈ X ,
∀A ⊆ R2 .

(4.23)

Other interesting metrics to assess the privacy of LPPMs are those based on
the worst-case output. For example, the worst-case output average error, defined
as

PWC-AE(f, π) = min
z∈R2

fZ(z)>0

min
x̂∈R2

{∑
x∈X

π(x) · f(z|x) · dP (x, x̂)

}
, (4.24)
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Figure 4.2: Two LPPMs that perform equally in the PAE vs. Q plane, might
behave very differently in practice. This is revealed by considering a multi-
dimensional characterization of privacy.

measures the average error of the adversary’s estimation in the most vulnerable
output. When applied to the coin mechanism, this metric would reveal its privacy
issue, since PWC-AE(fcoin, π) = 0.

On the other hand, the worst-case output conditional entropy, defined as

PWC-CE(f, π) = min
z∈R2

fZ(z)>0

∑
x∈X

p(x|z) · log p(x|z) , (4.25)

reveals the uncertainty the adversary has after observing z in the worst case (for
the user). If there is any output value z that leaks a lot of information about
the real location x (as it happens with every z 6= z∗ in the coin mechanism), this
metric highlights it.

The metrics introduced throughout this section add additional dimensions to
the privacy and quality loss evaluation procedure, revealing features not captured
by the standard 2-dimensional approach based on the average error and the aver-
age loss. An example of this new characterization of privacy is shown in Fig. 4.2
where we show the performance of two LPPMs as a 3-D plot of PAE, PCE and
Q, together with the projections in the PAE-Q and PCE-Q planes. In the next
section, we show similar examples (albeit with 2-dimensional plots, for clarity) of
particular location privacy preserving mechanisms.

4.5. Evaluation

In this section, we assess the performance of different location privacy-
preserving mechanisms with respect to different privacy notions. Our experiments
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Figure 4.3: Points of interest in
the San Francisco region taken
from Gowalla dataset.
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Figure 4.4: Priors π for Gowalla (left) and
Brightkite (right) datasets.

confirm that relying on a single metric for evaluation can lead to an erroneous
assessment of the privacy provided by an LPPM. We divide our evaluation into
two parts. First, we consider the continuous scenario introduced in Section 4.2
and use real datasets to evaluate the performance of unbounded LPPMs, and of
LPPMs that guarantee a maximum worst-case quality loss. Second, we consider a
simpler scenario where the locations can only belong to a discrete set, and evalu-
ate other defenses that have been proposed in the literature. All our experiments
are performed using Matlab.1

4.5.1. Continuous Scenario

For this part of the evaluation, we consider that users are interested in query-
ing about Points of Interest (PoIs) in a discrete set but they can report any
point in R2 to the server (see Section 4.2). We also consider that the adver-
sary performs her estimation in R2. We build the set of PoIs using the Gowalla2

and Brightkite3 real-world datasets. Following the approach of the finite domain
evaluation in [67], we restrict the PoIs to a finite region of San Francisco area be-
tween the latitude coordinates (37.5395 and 37.7910) and longitude (−122.5153
and −122.3789). We choose the San Francisco area because it contains a big den-

1https://www.mathworks.com/products/matlab.html
2https://snap.stanford.edu/data/loc-gowalla.html
3https://snap.stanford.edu/data/loc-brightkite.html

https://www.mathworks.com/products/matlab.html
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-brightkite.html
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Figure 4.5: Average error vs. average quality loss for different unbounded LPPMs
for Gowalla (left) and Brightkite (right) datasets.
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Figure 4.6: Conditional entropy vs. average quality loss for Gowalla (left) and
Brightkite (right) datasets.
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Figure 4.7: Geo-Ind Privacy PGI vs. average quality loss for Gowalla (left) and
Brightkite (right) datasets.

sity of points of interest and a large number of user check-ins, which ensures that
the data is rich and representative of what one would expect from users living
in the area. On the other hand, considering a finite region allows us to evaluate
LPPMs whose computational cost increases with the number of points of interest,
such as the exponential and exponential posterior LPPMs. We transform the PoIs
into Cartesian coordinates in kilometers using the Haversine formula with respect
to the center of the region. We end up with |X | = 9 701 PoIs for Gowalla and
|X | = 8 898 for Brightkite, distributed in an area of roughly 28km×12km. As ex-
ample, the distribution of PoIs for Gowalla is shown in Fig. 4.3. For each dataset,
we compute the mobility profile π by counting how many users check-in on each
point of interest and normalizing the resulting histogram. The obtained mobility
profiles are shown in Fig. 4.4. We see that, in both datasets, there is a single
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Figure 4.8: Average error vs. average quality loss for different bounded LPPMs.
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Figure 4.9: Conditional entropy vs. average quality loss for different bounded
LPPMs.
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Figure 4.10: Semantic map of the dis-
crete synthetic scenario.

point of interest xtop that draws a lot of attention from the users (π(xtop) ≈ 0.04
in Gowalla and π(xtop) ≈ 0.23 in Brightkite).

We evaluate six location-privacy preserving mechanisms, measuring their per-
formance in terms of the average adversary error (PAE), conditional entropy (PCE)
and geo-indistinguishability (PGI) for different values of average quality loss (Q).
We always use the Euclidean distance for the quality loss dQ(x, z) = ||x−z||2, and
therefore the optimal remapping in (4.15) is obtained by computing the geomet-
ric median of the posterior. We compute this median using Weiszfeld’s iterative
method. We first evaluate the LPPMs without any bounds on their worst-case
quality loss, and then imposing such constraint.

The first three LPPMs we evaluate consist in adding noise in the continuous
plane and then remapping them. We generate this noise in polar coordinates,
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sampling θ from a uniform distribution in (0, 2π) and the radius r from a distri-
bution specified below. Since for these algorithms we cannot find a closed form
expression for f(z|x), we evaluate them empirically. To this end we sample π
to obtain x, we obtain z adding the noise and performing the remapping, and
then we measure privacy according to each metric. We report averages over 5 000
repetitions. These LPPMs are:

[Lap] Planar Laplacian noise plus remapping [67]. To generate the radius
of the Laplace noise, we first sample p uniformly in the interval (0, 1). Then,
following [45], we set r = 1

ε

(
W−1

(
p−1
e

)
+ 1
)

where W−1 is the −1 branch

of the Lambert W function. We test different values of ε from 0.4km−1 to
40km−1, so that the average loss varies between 0.05 and 5km.

[Gau] Bi-dimensional Gaussian noise plus remapping. To generate
Gaussian noise, we sample the radius from a Rayleigh distribution, varying
its mean from 0.05 to 5km.

[Cir] Uniform circular noise plus remapping. In this case, we sample
the radius r ∈ (0, R) from f(r) = r/R2, where R is the maximum radius of
the circle, which we vary from 0.075km to 7.5km. This ensures an average
loss that varies between 0.05 and 5km.

Second, we evaluate three LPPMs that output values in a discrete set, whose
conditional probability density functions f(z|x) can be computed arithmetically.
This allows us to exactly determine their privacy and quality loss performance.
These LPPMs are:

[Coin] The coin mechanism, explained in Sect. 4.3.2. We vary its average
loss Q from 0 to 2.

[Exp] The Exponential mechanism plus optimal remapping. The expo-
nential mechanism is a general differential privacy technique that can be
applied to provide geo-indistinguishability [69]. We set Z = X and set a
parameter b, then compute the probability of mapping each input x to an
output z as p(z|x) = a · e−b·dQ(x,z), where a ensures that

∑
z∈Z p(z|x) = 1.

Then, we apply an optimal remapping to the outputs of this function and
obtain f(z|x). In the experiments, we vary b from 0.4km−1 and 40km−1.

[ExPost] Exponential posterior mechanism, proposed in Sec-
tion 4.4.1.2. In our experiments we set the discrete output alphabet of
this algorithm to Z = X .
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4.5.1.1. Results for Unbounded LPPMs (no Q+ Constraint)

When the worst-case quality loss is not constrained, the optimal remapping
ensures that all LPPMs are optimal in terms of average error, i.e., PAE = Q
(Fig. 4.5). This shows that the optimal remapping applied to any LPPM achieves
an optimal performance, whether it was Laplacian noise or a binary selection of
a location such as Coin, as we proved in Sect. 4.3.

Figure 4.6 shows the LPPMs’ performance in terms of conditional entropy
PCE, where the horizontal black line represents the maximum entropy achievable,
i.e., the entropy of the mobility profile π. Unsurprisingly, ExPost outperforms
the rest of the LPPMs, as it is optimized with respect to this metric. The relative
improvement of ExPost with respect to the other algorithms is slightly better in
Brightkite than in Gowalla. This is due to the fact that in Brightkite the most
frequent PoI is more popular than in Gowalla (see Fig. 4.4), and thus performing
well in this location is crucial to achieve a good overall privacy level in Brightkite.
The iterative structure of ExPost allows this LPPM to refine its performance and
be more effective than the rest of the LPPMs around this PoI. We note, however,
that this refinement comes at the price of an increase in computational cost.
Overall, all the LPPMs achieve a similar performance in terms of conditional
entropy, except for the coin, that performs poorly. This reinforces the critique in
Sect. 4.3.2: even though Coin is optimal in terms of the average adversary error,
measuring its performance in terms of conditional entropy reveals its privacy
flaws.

Figure 4.7 shows the LPPMs’ performance in terms of geo-indistinguishabi-
lity PGI(f) (we recall that PGI(f) = 1/ε), only for Lap, Exp and ExPost, as these
are the only algorithms that guarantee this property. As already seen in [67],
the Laplace noise outperforms the exponential mechanism, and ExPost performs
similar to the latter.

4.5.1.2. Results for Bounded LPPMs

We now impose a worst-case quality loss constraint of Q+
max = 1.5km to the

LPPMs (as a reference, we show a circle of radius 1.5km in Fig. 4.3). To imple-
ment this constraint in the LPPMs, we truncate their output at 1.5km and then
apply the optimal remapping that respects the worst-case loss constraint. We do
this by solving the problem in (4.15) with constraints. We do not evaluate the
coin mechanism in this scenario, since it almost always violates the Q+ constraint.

The results for the average adversary error as Euclidean distance are shown in
Fig. 4.8. As expected, the LPPMs obtained after the remapping in this scenario
are not necessarily optimal. We see that ExPost achieves a result that is close
to the optimal LPPM in the unbounded case, while the other LPPMs achieve
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Figure 4.11: Performance of Shokri et. al’s algorithm optimized for the adversary
error in terms of Euclidean distance (left) and semantic distance (right), compared
to the coin mechanism and exponential posterior mechanism.

less average privacy. We conjecture this is due to the iterative nature of ExPost,
that refines its performance, while the other LPPMs are not optimized regarding
the worst-case loss constraint. Again, ExPost achieves a wider advantage in
Brightkite for the same reason explained above.

Figure 4.9 shows the performance of the bounded LPPMs in terms of condi-
tional entropy. The results are similar to those in the unbounded scenario, with
ExPost outperforming the others with a slightly wider advantage in this case. As
bounded LPPMs do not achieve geo-indistinguishability, we do not evaluate the
performance with respect to this metric in this scenario.
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4.5.2. Discrete Scenario

We now consider a simple synthetic scenario and evaluate the optimal LPPMs
obtained following the method by Shokri et. al [46]. In this work, the authors
propose a linear program that finds an LPPM f inside the polytope of optimal
LPPMs for PAE given a constraint Q, i.e., f ∈ Fopt

Q . This approach is very
versatile, as it can be computed for any pair of distance functions dP (·) and dQ(·).
We set our synthetic scenario under the assumptions of that work: the input and
output alphabets are discrete and identical X = Z, and the adversary can only
estimate locations inside that same alphabet X̂ = X . For simplicity, we consider
that the set of locations in X are the centers of the cells that make a 5×5 square
grid and assign a tag to each location that can be “Home”, “Park”, “Shop” or
“Café”, as depicted in Fig. 4.10. We consider that the mobility profile is uniform
π(x) = 1/25 , ∀x ∈ X . We measure the point-wise loss as the Euclidean distance
dQ(x, z) = ||x−z||2 and consider two point-wise metrics of privacy: the Euclidean
distance and a semantic distance defined as the Hamming distance between tags,
i.e., dP (x, z) = 0 if Tag(x) = Tag(z), and dP (x, z) = 1 otherwise. This metric
is similar to the semantic metric in [64]. The average error computed using this
distance function represents the probability that an adversary guesses incorrectly
the tag of x.

We evaluate ExPost and Coin together with the optimal LPPM proposed
in [46]. For the latter, we solve the linear program to find optimal LPPMs in
terms of maximizing PAE using the Euclidean distance (Fig. 4.11, left column)
and the semantic distance we defined (Fig. 4.11, right column). As expected, the
optimal LPPMs (Shokri et. al) achieve the optimal privacy when evaluated using
the adversary’s error for which they are optimized (Figs. 4.11a and 4.11d), but
not when evaluated against a different metric (Figs. 4.11c and 4.11b). ExPost

and Coin achieve maximum privacy in terms of Euclidean distance, as before,
but not in terms of semantic distance. This example emphasizes that optimizing
an LPPM with respect to a privacy metric may provide very bad performance
with respect to other privacy criteria.

This experiment also shows another important idea: even though the solutions
of the linear program both achieve approximately the same performance in terms
of average error (optimal in Figs. 4.11a and 4.11d, suboptimal in Figs. 4.11c and
4.11b), they exhibit a radically different behavior in terms of conditional entropy.
Indeed, using the LPPM computed with the simplex algorithm (an LPPM at a
vertex of Fopt

Q ), the adversary has much less uncertainty about x on average than
if the user had implemented an LPPM from the interior of the polytope. This
difference in entropy is also what allows us to tell apart an LPPM such as ExPost
from Coin. Note that the LPPM computed by solving the linear program with
the simplex algorithm performs even worse than the coin in terms of entropy,
illustrating the dangers of optimizing privacy in only one dimension.
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4.6. Conclusions

In this chapter, we have demonstrated the problems of using a single privacy
metric as indicator of the performance of location privacy preserving mechanisms.
We have proven that there is more than one optimal LPPM in terms of maxi-
mizing the average adversary error for a given average quality loss, and that the
family of LPPMs that fulfill such condition behave differently in terms of other
privacy metrics. Thus, optimizing defenses with only one privacy metric in mind
may lead to LPPMs that offer poor protection in other dimensions of privacy.
To avoid selecting underperforming LPPMs we propose the use of complemen-
tary criteria to guide the choice. We provide two example auxiliary metrics: the
conditional entropy and the worst-case loss. We propose an optimal LPPM with
respect to the former, and provide means to implement LPPMs according to the
latter.

We evaluate the LPPMs, comparing them to previous work, on two real
datasets. Our experiments confirm two important ideas: first, that we cannot
find an LPPM that performs optimally with respect to every privacy metric.
Second, that even if an LPPM performs well in a particular metric it does not
imply that it is necessarily beneficial for the user. Our findings reveal the need
to take a step back in LPPM design to integrate privacy as a multi-dimensional
notion, in order to avoid solutions that provide a false perception of privacy.



Appendix

4.A. Proof: Optimal LPPM by Optimal

Remapping

We prove Theorem 4.3.2. In order to do this, first notice that, when dP (·) ≡
dQ(·), the quality loss Q is an upper bound of privacy PAE:

PAE(f, π) =

∫
R2

min
x̂∈R2

{∑
x∈X

π(x) · f(z|x) · dP (x, x̂)

}
dz

≤
∫
R2

{∑
x∈X

π(x) · f(z|x) · dQ(x, z)

}
= Q(f, π) , (4.26)

Now, assume that f ′ = f ◦ g, and therefore

z = argmin
z′∈R2

∑
x∈X

π(x) · f ′(z|x) · dQ(x, z′) . (4.27)

The optimal adversary estimation of x given z given in (4.4) can be written
as

x̂(z) = argmin
x̂∈R2

∑
x∈X

π(x) · f ′(z|x) · dP (x, x̂) . (4.28)

We see that since dP (·) ≡ dQ(·) the optimal adversary estimation is doing
nothing, i.e., x̂(z) = z. This implies that PAE(f

′, π) = Q(f ′, π), and since we have
achieved the upper bound on privacy given in (4.26), f ′ is optimal.

4.B. Proof: Geo-indistinguishability of the

Exp. Posterior Mechanism.

We recall that the geo-indistinguishability guarantee requires the following
condition to be fulfilled (now written for discrete LPPMs, where p(z|x) denotes
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the probability of reporting z when the original location is x):

p(z|x) ≤ eε·dP (x,x′) · p(z|x′) , ∀x, x′ ∈ X , z ∈ Z , (4.29)

where dP (x, x′) is the Euclidean distance.

The last iteration of the ExPost algorithm in 4.4.1.2 returns an LPPM that
can be written for a particular input x and output z as

p(z|x) =


PZ(z)·e−b·dQ(x,z)∑

z′∈Z PZ(z′)·e−b·dQ(x,z′) if PZ(z) > 0 ,

0 , if PZ(z) = 0 .
(4.30)

where dQ(x, z) is the Euclidean distance. In the second case, the geo-
indistinguishability guarantee is trivially achieved since given any pair of input
locations x, x′ ∈ X , p(z|x) = p(z|x′) = 0. For the first case, we use the triangular
inequality dQ(x, z) + dQ(x′, z) ≥ dQ(x, x′) to write

p(z|x) =
PZ(z) · e−b·dQ(x,z)∑

z′∈Z PZ(z′) · e−b·dQ(x,z′)
(4.31)

≤PZ(z) · eb·dQ(x,x′) · e−b·dQ(x′,z)∑
z′∈Z PZ(z′) · e−b·dQ(x,z′)

(4.32)

≤ PZ(z) · eb·dQ(x,x′) · e−b·dQ(x′,z)∑
z′∈Z PZ(z′) · e−b·dQ(x,x′) · e−b·dQ(x′,z′)

(4.33)

=
PZ(z) · e−b·dQ(x′,z)∑

z′∈Z PZ(z′) · e−b·dQ(x′,z′)
· e2b·dQ(x,x′) (4.34)

=e2b·dQ(x,x′) · p(z|x′) , (4.35)

which satisfies the geo-indistinguishability for ε = 2b or PGI = 1/2b, if dQ(·) is
the Euclidean distance. This concludes the proof.



Chapter 5

Rethinking Location Privacy for
Unknown Mobility Behaviors

5.1. Introduction

In the previous chapter, we designed and evaluated Location Privacy Preserv-
ing Mechanisms (LPPMs) using different privacy metrics. We assumed that user
mobility can be characterized by the mobility profile, and considered that this
profile is known a-priori (in our case, we extracted it from the same data that we
used for evaluation). Training the users’ mobility model using evaluation data
is not new, but inherited from [51], and it is a typical procedure in most of the
location privacy literature [46, 64,64,65,65,66,66,70,90–92].

In practice, the LPPM designer trains the user mobility model on past data
(since future data is not available). However, gathering mobility data that is
sufficient, up-to-date, and truly representative of a particular user’s behavior is
complicated. In most cases, user behavior is to some degree unknown and thus
LPPMs hardwired on (past) training data will not be optimal in practice. Also,
evaluating LPPMs on the same data used for their design is highly unrealistic,
and does not give a real sense of the privacy that these mechanisms provide.

Chatzikokolakis et al. have recently acknowledged part of this problem in [67],
where they claim that a fair assessment of LPPMs requires the separation between
the training dataset used for design, and the testing dataset used for evaluation.
Yet, their design strategy, as the rest of the previous works, hardwires the training
mobility model into the mechanism and they do not quantify how much privacy

This chapter is adapted with permission from IEEE: Simon Oya, Carmela Troncoso, and
Fernando Pérez-González. Rethinking location privacy for unknown mobility behaviors. In
IEEE European Symposium on Security and Privacy (EuroS&P), IEEE 2019.
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is lost in practice when the users’ mobility characteristics differ from the training
data.

In this chapter, we aim at understanding the privacy loss associated to this
discrepancy between design and deployment phases. We study both sporadic
cases, where users query the Location Based Service (LBS) occasionally and thus
their location is independent from previous LBS uses; and continuous cases, where
users’ actual location at a certain time depends on previously visited locations.
We find that, since the design strategies in previous works hardwire the train-
ing information on the LPPMs they produce, they cannot adapt to behavioral
patterns not available in the training data. We empirically show that, indeed,
previous analyses overestimate the protection of the optimal LPPMs when they
are evaluated on mobility profiles different from the training data.

In response to this problem, we introduce a new design strategy that builds on
what we call blank-slate models for user mobility. Contrary to hardwired models,
blank-slate models do not fix their parameters based on training data, but learn
these parameters as they observe the user behavior. We take the particular case of
sporadic location privacy and leverage a blank-slate model to build a new family
of defenses that we call Profile Estimation-Based LPPMs (PEB-LPPMs). Like
traditional LPPMs, these mechanisms are initialized with training data. However,
as the user queries the LBS, they adapt their parameters. Thus, they are more
adequate for those users whose behavior is not well-represented in the training
data. We empirically compare PEB-LPPMs with state-of-the-art LPPMs using
real data. Our evaluation confirms that PEB-LPPMs are more effective than
traditional hardwired models when the testing data cannot be fully characterized
a-priori by the training data.

To summarize, our contributions are:

We empirically show that hardwiring the characteristics of a dataset into
Location Privacy Preserving Mechanisms [46,51,64–67,90–93] yields mech-
anisms that do not adequately protect users whose behavior deviates from
that observed in training.

We propose blank-slate models for user mobility in location privacy. Con-
trary to hardwired models, these models treat the user mobility as an un-
known variable that is learned a-posteriori as the user queries the LBS.
Therefore, they enable the design of LPPMs that are effective when the
user behavior changes with respect to the one observed when designing the
mechanism.

We leverage a blank-slate sporadic mobility model to develop a new LPPM
design technique, that we call Profile Estimation-Based (PEB). PEB-
LPPMs adapt to the user behavior by performing a Maximum Likelihood
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Estimation (MLE) of the mobility profile given past observations, and are
suitable for both sporadic and non-sporadic location protection.

We compare PEB-LPPMs with optimal state-of-the-art designs developed
using hardwired sporadic and Markov models. PEB-LPPMs always outper-
form optimal sporadic hardwired LPPMs, and sometimes they even outper-
form optimal LPPMs based on Markov models if the training data does not
correctly capture the mobility behavior of the users of the testing set.

To carry out this comparison we extend efficient remapping techniques used
in optimal sporadic LPPMs [67] to build optimal non-sporadic Markov-
based LPPMs [91,93]. This considerably reduces the computational cost of
building non-sporadic LPPMs and allows us to evaluate them empirically.

The rest of the chapter is organized as follows. In the next section, we intro-
duce our system model and notation, as well as the evaluation framework that
we use in the chapter. Section 5.3 presents the sporadic and Markov mobility
models. Then, in Sect. 5.4, we explain how previous works use these mobility
models, hardwired on training data, to build optimal LPPMs. We train and eval-
uate these optimal LPPMs with real data in Sect. 5.5, showing that there is a gap
between their theoretical performance and their actual performance in the testing
set. We introduce blank-slate models and our technique to develop PEB-LPPMs
in Sect. 5.6, and evaluate it in Section 5.7. Finally, Sect. 5.8 summarizes related
work and Sect. 5.9 concludes.

5.2. Overview of the Location Privacy Problem

In this section, we first provide an abstraction of the location privacy problem
and introduce our notation. Then, we present our framework for design and
evaluation of LPPMs.

5.2.1. Problem Statement and Notation

As in the previous chapter, we consider the scenario where an individual, the
user, sends queries to an LBS provider and receives responses with the information
she desires. We consider that there is a passive adversary observing the locations
inside the user queries. This adversary can be an honest-but-curious LBS or
an eavesdropper. The adversary’s her goal is to infer private information from
the locations in user queries [94, 95]. To protect herself the user obfuscates her
locations using an LPPM, and sends these fake locations in the queries. By doing
so, the user trades in quality of service for privacy.
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Figure 5.1: Abstraction of the location pri-
vacy problem.

We illustrate the location privacy problem in Fig. 5.1. The model is similar
to the one presented in the previous chapter, but takes into account more than a
single query of the user. We use ρ to denote the total number of queries sent by
the user to the LBS, and refer to each query by its query number r ∈ {1, 2, · · · , ρ}.
We use xr ∈ X to denote the real location associated with the r-th query, i.e.,
the location the user wants to query about. We use x

.
= [x1, · · · , xρ] ∈ X ρ to

denote the vector of all the real locations, and xr
.
= [x1, · · · , xr] ∈ X r to denote

the vector of all the real locations up to query number r. Likewise, we use zr ∈ Z
to denote the r-th fake location reported and define the vectors z and zr. The
real and fake locations are also called input and output locations respectively.
Finally, we use x̂r ∈ X̂ to denote the adversary’s estimation of xr.

In this chapter, we assume that X , Z and X̂ are discrete sets of locations
(i.e., the users can only report locations in a grid). We do this for computational
simplicity and for compatibility with previous proposals [46,91,93]. However, all
of our findings can be extended to other scenarios (e.g., Z = R2 is the plane [92],
Z is a discrete set of cloaking regions [56], or a powerset of points of interest [90]).
We use x1, x2, · · · , x|X | to denote each of the discrete locations in X . Finally, we
use p generally to denote the probability mass function of a discrete random
variable, or the probability density function when the variable is continuous.
E {·} denotes the expectation.

Now, we explain how real, obfuscated, and estimated locations are generated.
The real locations x are chosen by the user as she queries the LBS. In some
scenarios, the user makes a sporadic usage of the LBS (e.g., location check-in,
location-tagging, or applications for finding nearby points-of-interest or friends).
This means that the real locations of two queries (e.g., xr and xs, with r 6= s)
are not temporally dependent. In other scenarios, however, the location of the
user in consecutive check-ins is correlated (e.g., a user that reports her location
frequently, such as running apps or WhatsApp’s live location sharing).

In order to generate obfuscated locations z from the real locations x the user
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employs an LPPM f . We study the online location privacy setting, in which the
user expects to get the service from the LBS right away. In this case, the LPPM
is modeled as a probabilistic function that maps a real location xr ∈ X , and
possibly other information available to the user up to that point (i.e., xr−1 and
zr−1), to a value zr ∈ Z. We use f to denote the probability density function
that characterizes the LPPM. Hence, we can write p(z|x) as

p(z|x) =

ρ∏
r=1

p(zr|zr−1,x) =

ρ∏
r=1

f(zr|zr−1,xr) , (5.1)

where the first equality is the chain rule of probability and the second equality
reflects the online setting assumption, i.e., the user generates zr given xr and
zr−1, but independently of future locations xr+1, xr+2, etc. We also refer to f as
the obfuscation mechanism.

Finally, the adversary generates the estimated locations using an attack h.
We assume that the adversary knows the obfuscation mechanism f and she uses
it to design her attack h. We treat h as a deterministic function that takes a
vector of obfuscated locations zr and produces an estimate x̂s of a (possibly past)
real location xs (s ≤ r). We use x̂s(zr) to denote the estimate produced from zr

using h. We do not consider randomized attacks, since the goal of the adversary
is to choose her estimation so as to minimize a specific privacy metric, which can
be achieved with deterministic attacks.

LPPM types: Depending on how much information they use to generate ob-
fuscated locations, LPPMs can offer stronger privacy guarantees at the cost of
introducing complexity in the design. In this chapter we study the following
LPPM types that can accommodate all previous proposals in the literature:

1. Full LPPMs are the most generic LPPM in the online location privacy set-
ting (see (5.1)), i.e., f(zr|zr−1,xr). They generate each obfuscation location
zr (perhaps randomly) using all the information available to the user, i.e.,
the previous and current input locations xr, and the previously released
obfuscated locations zr−1.

2. Output-based LPPMs, f(zr|zr−1, xr), generate the obfuscated location using
only the current real location xr and all the previous obfuscated locations
zr−1. These are a sub-type of full LPPMs.

3. Memoryless LPPMs, f(zr|xr), generate each obfuscated location using the
current real location xr only. These are a sub-type of output-based LPPMs.

We note that the framework in [51] considers LPPMs of the full type in its the-
oretical setup, but the evaluation studies only memoryless LPPMs. Memoryless
LPPMs are used in sporadic location privacy and works that consider a single
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Table 5.1: Summary of notation

Symbol Meaning

ρ Total number of queries.
xr Real location of the user in the r-th query.
zr Obfuscated location of the user in the r-th query.
xr (or zr) Vector of real (or obfuscated) locations up to query r.
x (or z) Vector of all real (or obfuscated) locations.
X (or Z) Set of all possible real (or obfuscated) locations.
h Adversary’s attack.
x̂s(zr) Adversary’s estimate of the real location xs using zr.

f LPPM or obfuscation mechanism (pdf that generates zr).
f(zr|zr−1,xr) Full LPPM.
f(zr|zr−1, xr) Output-based LPPM.
f(zr|xr) Memoryless LPPM.

dQ(xr, zr) Quality loss when reporting zr given xr.
Q(f, s) Average quality loss metric at query number r (5.2).
dP (xr, x̂r) Adv. error when the adversary estimates xr as x̂r.
PAE(f, h, r, s) Avg. adv. error of x̂s given zr and attack h (5.5).

location release [46,66,67,72,90,92]. Output-based LPPMs are typically used in
non-sporadic location privacy works [91, 93] and, to the best of our knowledge,
no optimal full-LPPM has been proposed due to the computational complexity
inherent to its design.

The notation used in the chapter is summarized in Table 5.1.

5.2.2. Design and Evaluation Framework

We now describe a framework that instantiates the abstraction above. This
framework extends ideas from [51, 67]. It consists of two steps: the design step,
where the user designs the LPPM f ; and the evaluation step, where the perfor-
mance of f is evaluated empirically. The framework is represented in Fig. 5.2.

Design Step: In this step, the user studies the location privacy problem and
builds the LPPM f . We assume that the user has access to a training set.
She derives her design according to some performance requirements, in terms
of privacy and utility metrics (e.g., maximizing privacy while keeping the utility
level above some bounds). Also, the user does not know the adversary’s attack h,
so she designs the LPPM considering a worst case adversary. In order to compute
the privacy and utility metrics, the user needs a model for the joint distribution
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Figure 5.2: LPPM design and evaluation framework.

p(x, z) = p(x) · p(z|x). The first term, p(x), is the joint distribution of the real
locations of the user. The user derives this distribution by training her mobility
model with the training set information. The second term, p(z|x), is determined
by the LPPM f , as in (5.1).

Evaluation Step: In this step, the performance of f against one or more attacks
h is assessed empirically using a testing set. Following Kerckhoffs principle, we
assume that the adversary knows the user LPPM, and uses an optimal attack, i.e.,
an attack that minimizes the privacy metric. To develop the worst-case attack
we assume that the adversary knows mobility statistics about the testing set
(e.g., the actual probability distribution of x), a common assumption in related
works [46,51,91,92].

The testing set contains real traces of locations x from a location privacy
dataset. The outputs z are probabilistically generated using f and x. Then,
the estimations x̂s (s = 1, 2, · · · ) are calculated using h and z. The privacy and
utility performance of the LPPM is assessed empirically based on x, z and x̂s.

Note that there is a fundamental difference between the design and the eval-
uation steps, regarding the treatment of the real locations x. The design step is
carried out by studying the problem analytically, and this is done by assuming a
particular mobility model for the real locations p(x). The evaluation step, on the
contrary, is carried out empirically with real samples of x. Ideally, the user wants
her mobility model to closely resemble her real behavior, so that her theoretical
analyses translate well into practice. However, finding a realistic model for x is
a very complicated task due to the unpredictability and complexity of user be-
havior. Notice that this is not an issue for the generation of z. This is because
these samples are generated by p(z|x), which is completely characterized by the
obfuscation mechanism and is the same in the design and evaluation steps.

Main Differences with Previous Work: This framework takes ideas from the
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literature, but also adds some contributions. The framework by Shokri et al. [51]
considers an adversary that designs her attack based on the evaluation data, but
does not evaluate LPPMs designed to maximize privacy. The separation between
training and testing data is considered for the first time in [67], but there is
no quantification of the privacy loss associated to users’ whose mobility profiles
diverge from the training data.

In this chapter, we integrate the training/testing separation as part of the
framework. We also consider the selection of a model for the real locations p(x)
as a crucial part of the designing step, which was considered as given by previous
works [46, 51, 64–67, 90–93]. Finding a suitable theoretical model for the user
mobility p(x) and fitting it to the training data is part of the LPPM design
process. However, we cannot take for granted that the actual locations of the user
in practice x will follow the theoretical model that she considered for design, and
thus the performance of the LPPM in practice might differ from the theoretical
performance.

5.2.3. Performance Metrics

We quantify the performance of LPPMs using privacy and utility (or quality
loss) metrics. Even though in Chapter 4 we showed that a fair assessment of
LPPM performance should be carried out by considering many privacy metrics,
for the purposes of this chapter it is enough to use only the average quality loss as
utility metric, and the average adversary error as privacy metric. These metrics
are the most popular in the user-centric location privacy literature [45, 46, 51,
64–67, 91–93]. We now define these metrics, and explain how to compute them
analytically given a model of p(x), and empirically given samples of pairs (x, z).
Later, in Section 5.7.3 we explain why the improvements that we achieve in terms
of average adversary error would also apply to other privacy metrics.

Utility Metric: Average Quality Loss. The average quality loss measures
how much quality the user loses on average by reporting obfuscated locations
instead of real ones [45,46,65–67,91–93]. Let dQ(x, z) be a point-to-point distance
function that measures the loss incurred by revealing z when the real location is
x. The average loss at query r given LPPM f is

Q(f, r)
.
= E {dQ(xr, zr)} , (5.2)

where the expectation is taken over realizations of xr and zr. Given a distribution
p(x), we can compute this metric theoretically as

Q
theo

(f, r) =
∑
xr∈X

∑
zr∈Z

p(xr) · p(zr|xr) · dQ(xr, zr) , (5.3)

where p(xr) and p(zr|xr) can be obtained analytically from p(x) and p(z|x).
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Empirically, we can compute this metric by averaging the distance between
xr and zr over multiple simulations, i.e.,

Q
prac

(f, r) = Eemp{dQ(xr, zr)} , (5.4)

where Eemp{·} denotes the empirical mean.

The typical choice for the distance function dQ(·) is the Euclidean distance.
However, dQ(·) can be tailored to the particular application where we want to
provide location privacy. For example, in an application to find nearby points
of interest within a city, the Manhattan distance is appropriate to measure the
walking distance to go from x to z. In that case, Q would represent the average
amount of extra meters that the user has to walk to reach the desired point of
interest. In a ride-sharing app, however, dQ(x, z) can represent the extra time or
money that the user loses by reporting z instead of her real location x. We can
also use semantic metrics based on the location tags of x and z, etc.

Privacy Metric: Average Adversary Error. The average adversary error is
defined as the mean error incurred by an adversary that estimates the user real
locations using an attack h [45, 46, 51, 64–67, 91–93]. Let dP (x, x̂) be a function
that quantifies how much privacy the user has when her real location is x and
the location estimated by the adversary is x̂. Typically, dP (·) is the Euclidean
distance, but it can adapted to a particular application. Consider that the ad-
versary has observed r outputs (zr) and wants to estimate the location xs with
s ≤ r. For this, she uses an attack h that produces an estimation x̂s(zr). The
average adversary error at query r regarding xs can be defined as

PAE(f, h, r, s)
.
= E {dP (xs, x̂s(zr))} , (5.5)

where the expectation is taken over xs and zr (the attack is deterministic, i.e., x̂s

is a function of zr). Given a mobility model p(x), this metric can be computed
analytically as

Ptheo
AE (f, h, r, s) =

∑
xr∈X r

∑
zr∈Zr

p(xr)p(zr|xr)dP (xs, x̂s(zr)) . (5.6)

Empirically, for each realization of x and z, we obtain the adversary estimation
x̂s(zr), and then compute the average adversary error as

Pprac
AE (f, h, r, s) = Eemp{dP (xs, x̂s(zr))} . (5.7)

We acknowledge that there are other privacy metrics, e.g., the conditional
entropy [92] and geo-indistinguishability [45]. In our empirical evaluation in
Sect. 5.7.3 we discuss how our findings affect those metrics.
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5.3. Mobility Models for LPPM Design

As we explained before, in order to design LPPMs, the user needs to assume
a model that characterizes her mobility behavior, i.e., a model for p(x). In this
section, we explain the main mobility models assumed in the literature: the
sporadic mobility model, and the Markov model (non-sporadic). We do not
claim that there is a correct mobility model for p(x) that the user should follow.
However, it is true that LPPMs optimized for a certain model will perform better
when the actual user location traces follow such model. In other words, models
that are closer to real behavior are more useful.

5.3.1. Sporadic Model

The sporadic location privacy model assumes that the real locations of the
user in two different queries, i.e., xr and xs, are not temporally dependent. As
we argued before, this makes sense in some scenarios where the user requests
information from the LBS infrequently (e.g., a user that queries for the weather
in her area is not likely to perform the another query in a short period of time).

The sporadic model characterizes p(x) using a parameter called the , denoted
by π (Fig. 5.3, left, and Fig. 5.4). The mobility profile is an abstraction that
represents the long-term user behavior, i.e., the probability with which the user
visits each location x ∈ X . Thus, given π, we can write

p(x|π) =

ρ∏
r=1

p(xr|π) =

ρ∏
r=1

π(xr) , (5.8)

where we have used π(x) to denote the probability that the user’s real location
is x given the profile π.

This model has been widely used in the literature [46, 65, 67, 92], mainly for
its simplicity: using the fact that two check-ins xr and xs are independent allows
the user to design LPPMs that only need the current input xr to generate the
next output zr.

5.3.2. Continuous Model: Markov

In some scenarios, the sporadic model for user mobility is not appropriate. For
example, when a user queries the LBS continuously (e.g., live location sharing
in social networks), we cannot assume that the location xr+1 is independent of
the previous one xr (e.g., because physical constraints such as the user speed or
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Figure 5.3: Sporadic (left) and Markov
(right) models of user mobility.

Meaning
π Mobility profile

p(xr|π) = π(xr)
π0 Initial mob. prof.

p(x1|π0) = π0(x
1)

M Transition matrix.
p(xr+1|xr,M) =
M(xr+1|xr)

Figure 5.4: Notation and mean-
ing of the model parameters.

roads existence and direction). In those cases, continuous models that specify the
dependencies between the real locations are more adequate to design LPPMs.

The most typical model in this scenario is the Markov model. As its name sug-
gests, this model characterizes xr as a Markov chain. More specifically, Markov
models are defined by two parameters: an initial mobility profile π0, and a tran-
sition matrix M (Fig. 5.3, right, and Fig. 5.4). The initial profile models the
probability of the first location of the user, i.e., p(x1|π0) = π0(x

1). The transition
matrix M is a |X | × |X | matrix whose (i, k)-th element characterizes p(xri |xr−1j ),
regardless of r > 1. We use M(xr|xr−1) to denote the probability that the user
transitions from location xr−1 to xr according to the matrix M . The probability
of a trace p(x) according to the Markov model is thus

p(x|π0,M) =

ρ∏
r=1

p(xr|xr−1, π0,M) = π0(x
1) ·

ρ∏
r=2

M(xr|xr−1) . (5.9)

The Markov model has been widely used in non-sporadic location privacy,
due to its simplicity [91,93]. Note that in the Markov model, the user’s mobility
behavior only depends on her current location, and not the past trace. It is
possible to define more complicated models for continuous location release (e.g.,
characterize p(xr|xr−1)), but since these are rarely used, we do not consider them
in this chapter.

5.3.3. Hardwiring Training Data into the Mobility Model

After the user chooses one model to design her LPPM, she has to decide how
to estimate the parameters of that model (i.e., π in the sporadic model, π0 and M
in the Markov model). In the literature, to the best of our knowledge, all of the
proposals rely on some training information to determine these parameters [46,51,
64,65,67,91–93,96]. After this training phase, the model parameters remain fixed
during the evaluation. We call the models that are built in this way hardwired
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models. Hardwired models are tailored to the training data data a-priori during
training, and their parameters are never updated or adapted for users that deviate
from the training data behavior. Therefore, the LPPMs designed with these
models will be optimal in practice if the users’ behavior is perfectly captured by
the training data. If this is not the case, or if the training data is insufficient
or nonexistent, it is reasonable that the LPPMs designed with hardwired models
will perform worse than expected. We confirm this conjecture later in Section 5.5.

5.4. LPPM Design in Hardwired Models

In this section, we overview previous approaches to design LPPMs leveraging
hardwired models for user mobility. We consider optimal LPPM designs, i.e.,
defense mechanisms that, under a certain mobility model, maximize the privacy
metric PAE against the best possible attack given a constraint on the maximum
average loss Q allowed. We note that, given a mobility model, there is a familiy
of LPPMs that are all optimal (i.e., all of them achieve the maximum PAE given
a constraint on Q), as proven in [92]. However, there are no universally optimal
LPPMs in practice, i.e., when evaluated with testing data against an optimal
attack. Thus, it is important to keep in mind that, even if two members of a family
of optimal LPPMs perform equally in theory, they might perform differently in
practice.

We explain LPPM design for the r-th release: the user is at location xr

and wants to query the LBS by releasing an obfuscated location zr. The user
knows all her previous real and obfuscated locations, i.e., xr−1 and zr−1, and the
LBS/adversary knows the previously released locations zr−1. The optimal LPPM
design problem can be written mathematically as

f = argmax
f

min
h

PAE(f, h, r, r) ,

subject to Q(f, r) ≤ Qmax.
(5.10)

Note that f must satisfy some additional constraints since it is a probability
density function, but we have omitted those from (5.10) for simplicity. Also,
we have considered just the case where the user wants to protect her current
location at time r. We note however that the user could set other goals, like
trying to protect the privacy of future location releases PAE(f, h, r, s) for s > r,
past locations (s < r), or a combination of both. Our findings could be adapted
to such cases, but we do not study them here for simplicity and space restrictions.

We also limit ourselves to optimal output-based LPPMs, i.e., defenses that can
be characterized by f(zr|zr−1, xr) and do not depend on previous inputs xr−1. We
do this to avoid the computational issues that stem from the fact that, in order
to guarantee that an LPPM is optimal, the user has to assess its privacy against
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an optimal attack. In order to do this with a full-LPPM f(zr|zr−1,xr), she has
to characterize the posterior probability of the secret locations after releasing the
obfuscated locations, i.e., p(xr|zr−1). If x ∈ X and X is discrete, this requires
handling |X |r values, which quickly becomes unfeasible for any computer (e.g.,
in a small map with |X | = 200 discrete locations, if we represent a float with 4
bytes, to protect only r = 8 locations we would need over 1 million Terabytes).
Since measuring the privacy against an optimal adversary is unfeasible in full-type
LPPMs, we do not consider them in our design approaches.

Note that this computational issue is not a problem in output-based LPPMs.
This is because, in this case, to assess the performance against an optimal ad-
versary the user internally computes p(xr|zr−1). She only needs to handle |X |
parameters for this, since zr−1 have been seen in the past by both the user and
the adversary, so they can be treated as fixed parameters at time r.

Below, we explain how to compute optimal LPPMs in the sporadic and
Markov hardwired models.

5.4.1. LPPM Design in the Hardwired Sporadic Model

In the literature, we find many works that study LPPM design under the
sporadic hardwired model for user mobility. Most works consider that the LPPM
belongs to the memoryless type f(zr|xr), either for tractability [46,92] or because
they focus on single queries [65,67]. In Appendix 5.A, we formally prove that, in
the hardwired model, a properly designed LPPM of the memoryless type does not
provide less privacy than an LPPM of the full type f(zr|zr−1,xr). This means
that considering full-type or output-based LPPMs just complicates the problem
and does not provide any advantage over memoryless LPPMs.

There are two main approaches to compute optimal LPPMs in sporadic mod-
els:

Linear Programming Approaches. Shokri et al. provide a technique to design
optimal LPPMs given any pair of functions dP (·) and dQ(·) [46]. This approach
consists on solving a linear program, which can only be done, for computational
reasons, if the spaces of real (X ) and obfuscated (Z) locations are discrete. The
program receives the mobility profile π which determines the distribution of xr,
and returns an optimal LPPM f(zr|xr). If the number of discrete locations is N ,
the linear program contains N(N + 1) bounded variables, N2 + 1 inequality con-
straints, and N equality constraints. Therefore, finding an optimal obfuscation
mechanism using linear programming is only feasible if the number of discrete
locations is modest.

Also, Oya et al. showed in [92] that the algorithm used to solve the linear
program greatly affects the performance of the resulting LPPM in terms of other
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privacy metrics (e.g., the conditional entropy). The recommendation in [92] is to
use an interior-point algorithm, rather than a simplex algorithm.

Remapping Techniques. In [67], Chatzikokolakis et al. propose a technique
called optimal remapping that provides an average loss improvement for any mem-
oryless LPPM, without reducing privacy. They proposed this method under the
hardwired sporadic mobility model. We used this technique in the previous chap-
ter, but we summarize it here briefly for clarity, since we use it below. Let f̃ be
an obfuscation mechanism, and let z̃r be an obfuscated location generated from
xr using such LPPM. Before reporting z̃r, the user can compute the posterior
p(xr|z̃r) using π(xr) and f̃ . With this posterior, she can compute an alternative
obfuscated location zr:

zr = argmin
zr

∑
xr∈X

p(xr|z̃r) · dQ(xr, zr) . (5.11)

By reporting zr (instead of z̃r), the user achieves a reduction on her average loss
(if the mobility profile π of the sporadic model used to compute (5.11) is close to
her real behavior). Also, note that no information about the previous or current
input is used in the remapping (since the posterior is computed only using the
current output and π, which are known to the adversary). This means that, by
performing this “remapping” from z̃r to zr, the privacy of the resulting LPPM
cannot decrease.

Later, in [92], Oya et al. proved that if the distance functions used to measure
privacy and utility are the same (i.e., dP (·) ≡ dQ(·)), the LPPM that results
from remapping any LPPM is optimal in the hardwired sporadic mobility model.
This technique can even be applied to design LPPMs when their output space is
the plane Z ≡ R2. Overall, solving (5.11) is much faster than solving the linear
program mentioned above, although it only yields optimal LPPMs if dP (·) ≡
dQ(·).

5.4.2. LPPM Design in the Hardwired Markov Model

In the Markov model, the input locations x1, x2, . . . are correlated. This cre-
ates dependencies between past released locations zr−1 and the current location
xr, that the user must take into account when designing the LPPM.

To the best of our knowledge, the only approach to compute optimal LPPMs
under the Markov mobility model consists on solving a linear program [91, 93].
We explain this approach, and then extend the remapping techniques of sporadic
models so that we can efficiently design optimal LPPMs under the Markov model.

Linear Programming Approaches. Theodorakopoulos et al. [93] extend the
linear programming approach of [46] to the non-sporadic location privacy case.
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They propose a framework where the user can specify which obfuscated loca-
tion(s) she wants to generate at time r, which real locations she wants to protect,
and which obfuscated locations were released to the LBS in the past. In their
implementation, they specifically consider a Markov model for user mobility. In
the case we are studying, where the user wants to release zr to protect xr and
zr−1 have already been released, the approach works as follows.

For the first release (r = 1), the user just takes the initial profile π0(x
1) and

solves a linear program analogous to the sporadic location privacy one [46]. This
produces an LPPM f(z1|x1) that maximizes the privacy metric given a quality
loss constraint. Then, she computes the posterior p(x1|z1) using π0(x

1) and Bayes’
formula, and uses it to obtain the probability distribution of the next real location
given the released location: p(x2|z1) =

∑
x1∈X M(x2|x1) · p(x1|z1).

For the next releases (r > 1), the steps are analogous, but they use p(xr|zr−1)
instead of π0. Particularly, before the r-th query the user knows p(xr|zr−1).
With this probability distribution, the user can solve a linear program to find an
optimal LPPM f(zr|zr−1, xr). Then, she can compute the posterior using Bayes’
formula:

p(xr|zr) =
f(zr|zr−1, xr) · p(xr|zr−1)∑

x̃r∈X f(zr|zr−1, x̃r) · p(x̃r|zr−1) , (5.12)

and update it for the next step using the Markov transition matrix:

p(xr+1|zr) =
∑
xr∈X

M(xr+1|xr) · p(xr|zr) . (5.13)

In [91,93], the authors evaluate their LPPMs theoretically, i.e., they compute
the average adversary error and average loss that the user would have if she
followed the Markov model using the analytical expressions (5.3) and (5.6). For
example, they compute f(z2|z1, x2) for all possible values of z2, z1, x2. Therefore,
for computational reasons, they do not evaluate the performance of these LPPMs
for more than r = 3 consecutive locations. During an empirical evaluation,
however, one does not need to store all possible values of these variables. Since
the past obfuscated locations zr−1 are known both to the user and the adversary,
the user can just compute f(zr|zr−1, xr) by assuming that zr−1 is fixed. Therefore,
the computational cost of computing this Markov-based LPPM in each query is
the same as solving the linear program in the sporadic case.

Remapping Techniques. Even though the complexity of the linear program-
ming approach in the Markov scenario is the same as in the sporadic scenario,
if the number of discrete locations we consider is not small, finding an optimal
LPPM is still computationally expensive. To solve this issue, we extend the
remapping techniques to the Markov scenario. To the best of our knowledge,
this is the first time these techniques are extended beyond the sporadic location
privacy scenario.
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Assume that, at the time of the r-th location release, the user has computed
p(xr|zr−1) according to the Markov model. Let f̃ be any memoryless-LPPM
f̃(z̃r|xr). The user uses this LPPM to generate a temporary z̃r, and then com-
putes the posterior

p(xr|z̃r, zr−1) =
f̃(z̃r|xr) · p(xr|zr−1)∑

x̃r∈X f̃(z̃r|x̃r) · p(x̃r|zr−1)
. (5.14)

With this posterior, she can then compute the final location that she releases

zr = argmin
zr

∑
xr∈X

p(xr|z̃r, zr−1) · dQ(xr, zr) . (5.15)

This process defines a new LPPM f(zr|zr−1, xr). At this point, the user can
compute p(xr+1|zr) for the next release following (5.12) and (5.13). Computing
the LPPM by solving (5.15) is much faster than solving the linear program ex-
plained above. Also, the LPPM that results form the remapping can be shown
to be optimal in the hardwired Markov model if dP (·) ≡ dQ(·) (c.f. [92]).

5.5. Evaluation: Optimal Hardwired LPPMs

In this section, we evaluate the optimal LPPMs developed for hardwired mod-
els that we described in Sect. 5.4 using the evaluation framework described in Sec-
tion 5.2.2. For readability and clarity, we use the term SP-LPPM to denote a generic
LPPM that is optimal under the hardwired SPoradic mobility model [46,67,92].
This LPPM can be computed by following any of the techniques explained in
Sect. 5.4.1. Likewise, we use MK-LPPM to denote an LPPM that is optimal under
the hardwired MarKov mobility model [91,93] (we can compute it as explained in
Sect. 5.4.2). Note that SP-LPPM and MK-LPPM define families of optimal LPPMs
(i.e., there are infinite instantiations of them that meet their optimality condi-
tions).

We perform two different experiments: one to evaluate SP-LPPM in the spo-
radic location release scenario (Experiment SP), and another one to evaluate
MK-LPPM in the continuous location release (Experiment MK). For these exper-
iments, we consider three datasets, two different instantiations of SP-LPPM and
MK-LPPM, and two optimal attacks. We explain these choices below. Table 5.2
summarizes the new terminology of this evaluation, and Table 5.3 shows the
configuration of our experiments.

Datasets. We consider three datasets: Brightkite1, Gowalla2, and TaxiCab

1https://snap.stanford.edu/data/loc-brightkite.html
2https://snap.stanford.edu/data/loc-gowalla.html
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Table 5.2: Terminology for the experiments.

SP-LPPM Family of optimal LPPMs developed
with the hardwired sporadic mobility
mode (Sect. 5.4.1).

MK-LPPM Family of optimal LPPMs developed
with the hardwired Markov mobility
mode (Sect. 5.4.2).

SP-LH Optimal location hiding LPPM from
the SP-LPPM family.

SP-Exp Optimal exponential LPPM from the
SP-LPPM family.

MK-LH Optimal location hiding LPPM from
the MK-LPPM family.

MK-Exp Optimal exponential LPPM from the
MK-LPPM family.

Table 5.3: Summary of the experiments to evaluate hardwired LPPMs.

Experiment SP Experiment MK
Evaluation target SP-LPPM MK-LPPM

Datasets
Gowalla (shuffled) Gowalla

Brightkite (shuffled) Brightkite
TaxiCab

Distance function Manhattan (dP ≡ dQ)

LPPM
Loc. Hiding (SP-LH) Loc. Hiding (MK-LH)

Exponential (SP-Exp) Exponential (MK-Exp)
Attack we evaluate Optimal Sporadic Optimal Markov



122 5.5. Evaluation: Optimal Hardwired LPPMs

traces from CRAWDAD.3 Each dataset contains location traces identified by the
user ID, latitude, longitude, and timestamp. We take user check-ins inside the
San Francisco region (we take the region between latitude coordinates 37.5500
and 37.8010, and longitude coordinates −122.5153 and −122.3789). Then, we
quantize the area into 25 × 10 regions and consider the centers of those regions
as our alphabets X = Z = X̂ , as in [91,93].

Gowalla and Brightkite are examples of datasets with very sparse check-in
behavior (e.g., in Gowalla, each user has an average of 60 check-ins during over
20 months of data collection). Thus, in these datasets we separate 20 users that
have at least 300 check-ins inside the San Francisco region, regardless of when
those check-ins were made, and save the remaining check-ins of all the other users
together (around 35 000 in Brightkite and 75 600 in Gowalla).

Regarding the training/testing separation, in our experiments, we evaluate
the performance of the last 5 users in these datasets. We consider two training
settings: in the first setting, that we call scarce training, the users train their
LPPMs with the traces of the first 15 users (4 500 locations). In the second
setting, that we call rich training, each user trains her model using the check-ins
of all the other users in the dataset (35 000 in Brightkite, 75 600 in Gowalla).
This is depicted in Fig. 5.5a.

TaxiCab contains very dense location reports of cabs in the San Francisco
region over 30 days. In this case, we organize each user’s traces by days, and
discard those days where the user remains silent for more than 2 hours. Then, we
select 10 users for which we retain at least 10 days. For each trace, we select one
check-in for each period of 5 minutes (considering that the user remained in the
same location if she did not perform a new check-in in the last 5 minutes). This
way, we build, for each user, a set of 10 days with 288 check-ins (288 · 5 minutes
= 1 day).

In this dataset, we evaluate the performance of each user in her last 3 days.
We consider two settings for the training data: in our first setting (scarce), each
user uses her first day as training data. In our second setting (rich), each user
trains her model using her first 7 days of data (Fig. 5.5b).

Training the LPPMs. We explain how the users estimate the parameters of
the models that they use to build optimal LPPMs. For the LPPMs built using
the hardwired sporadic model (SP-LPPM), each user computes π as a normalized
histogram of the training set traces, i.e., she counts the number of check-ins in
each location x ∈ X in the training data and normalizes by the total number of
check-ins.

For LPPMs built using the hardwired Markov model (MK-LPPM), each user
computes π0 as a normalized histogram of the location check-ins in the training

3https://crawdad.org/epfl/mobility/20090224/
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Figure 5.5: Processed datasets that we collected. We consider two training set-
tings for each dataset (scarce and rich). For each of these settings, the figure
displays the training data in green, and the testing data in orange.

data, and builds the transition probabilities M(xi|xj) by counting the number of
transitions from xj to xi in the data, and normalizing.

LPPM instantiations. For each family of optimal LPPMs (SP-LPPM and
MK-LPPM) we test the performance of two different instantiations:

LH refers to location hiding : for each input location xr, the user chooses
randomly between revealing her real location zr = xr (with probability α)
or not revealing any information (with probability 1 − α). We model the
second case as picking uniformly at random another location of the map.
We test 10 values of α = 0, 0.1, 0.2, . . . , 1 to study the trade-off between PAE

and Q. We apply an optimal remapping to this LPPM to make it optimal:
the remapping in Sect. 5.4.1 gives us an SP-LPPM that we denote SP-LH, and
the remapping in Sect. 5.4.2 gives us an MK-LPPM that we denote MK-LH.

Exp is the exponential LPPM [69]: this LPPM reports location zr with a
probability proportional to exp(−dQ(xr, zr) · ε) (i.e., it has an exponentially
decreasing probability of reporting locations that are far from the real loca-
tion). We test 10 values of ε = 0km−1, 0.02km−1, 0.04km−1, . . . , 0.02km−1

to tune the average loss and privacy of this LPPM. We apply an optimal
remapping to this LPPM to build an optimal defense (denoted SP-Exp and
MK-Exp for the sporadic and Markov models, respectively).
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Attacks. As we mentioned in Section 5.2.2, we consider a worst-case adversary
which deploys optimal attacks constructed with information about the testing
data. The optimal attacks, after observing zr, compute the posterior p(xr|zr)
and pick the x̂r that minimizes the privacy PAE. We consider two attacks: a
sporadic-based and a Markov-based attack. These attacks use the actual mobility
profiles and transition matrices of the users (i.e., computed from the testing data)
to perform their estimation x̂r.

In all of our experiments, we use the Manhattan distance as the distance
metric for privacy dP (·) and utility dQ(·). We think this is a reasonable choice,
since our traces belong to metropolitan areas, where the Manhattan distance
between two points is close to the physical distance that a car/person has to
traverse to move from one point to the other. We measure distance in kilometers
(km), but this could be converted to time (by dividing it by speed) or another
metric related to the physical distance between two points.

We note that, since we chose dP (·) ≡ dQ(·), the theoretical performance of any
optimal LPPM is PAE = Q, as shown empirically in [46] and proven analytically
in [92]. This means that any optimal LPPM evaluated in the same data used for
its training would achieve PAE = Q. This is true for SP-LH and SP-Exp against the
optimal sporadic attack, and for MK-LH and MK-Exp against the optimal Markov
attack. We see below that, when these optimal LPPMs are evaluated on a testing
set that is different from the training data, they do not achieve this optimal
privacy level, i.e., in practice, PAE < Q.

We explain how we generate the plots in our evaluation. Given a particu-
lar experiment, user, and LPPM setting, we compute Q(f, r) and PAE(f, h, r, r)
by averaging 100 repetitions of our experiment (i.e., we repeat the process of
computing the LPPM, generating obfuscated locations and computing the ad-
versary estimation 100 times). Then, we average the performance over r (i.e.,
Q

.
= 1/ρ

∑ρ
r=1 Q(f, r) and PAE

.
= 1/ρ

∑ρ
r=1 PAE(f, h, r, r)). This gives us, for each

user that we evaluate, points along their PAE vs. Q performance line. Finally, we
generate quality loss values linearly spaced between 0 and 4km and, using linear
interpolation, compute the average, maximum and minimum privacy over the
users for each of those quality loss values. All of our experiments are conducted
using Python 3.

5.5.1. Experiment SP: Sporadic Hardwired LPPMs

We evaluate SP-LH and SP-Exp against the optimal sporadic-based attack that
uses the real mobility profile of the user. We use only Gowalla and Brightkite
datasets for this experiment, since Taxicab is more characteristic of non-sporadic
mobility behaviors. For each simulation of this experiment, we randomly shuffle
the user traces (i.e., each column in the matrix represented in Fig. 5.5a). We do
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this to break any possible timing correlation that remains in these datasets and
ensure that our evaluation of these LPPMs is fair.

Figure 5.6 shows the results, where the blue and orange lines represent the
average privacy of the users when they use the scarce and rich training data,
respectively. The shaded area represents the minimum and maximum privacy
among the users that we evaluate. We see that, in both datasets, and regardless
of the LPPM type, the privacy of the users evaluated with a testing data that
differs from the training information is below the theoretical value PAE = Q. Also,
training with the rich training set provides more privacy on average, since this
dataset has more information about the sporadic check-in behavior of the users
(35 000−75 600 check-ins, versus 4 500 check-ins of the scarce dataset). However,
this improvement is slight: none of the training sets capture the real user behavior
precisely, since both contain data from different users. Some of the users that
we evaluate have a behavior that is particularly different from the training data
(e.g., lower shaded area in Fig. 5.6b), and thus achieve very low privacy. This
experiment shows that training an optimal sporadic LPPM with location data
from other users (e.g., [67]) is very dangerous from a privacy standpoint.

5.5.2. Experiment MK: Markov Hardwired LPPMs

We evaluate MK-LH and MK-Exp against the optimal Markov adversary. Fig-
ure 5.7 shows the performance in Brightkite and Gowalla, and Fig. 5.8 shows the
performance in TaxiCab dataset. The results in Brightkite and Gowalla are very
similar to the ones in the previous experiment, i.e., an optimal Markov LPPM
that has been designed by hardwiring it on training data from other users provides
significantly less privacy than expected in theory.

The results in TaxiCab dataset, however, are significantly better for the users.
This is because, in this dataset, we have continuous location data (i.e., one loca-
tion reported every 5 minutes). This means that two consecutive locations are
highly correlated because of road restrictions (e.g., one-way roads, mandatory
turns, etc.). Cabs follow very different paths each day, and thus it would seem
that training their LPPMs with past data should not be significantly beneficial
for them. However, the training data encodes these road restrictions. This is
very important: the optimal Markov LPPMs are thus designed taking these con-
straints into account. Since the road restrictions are also part of the testing data,
the optimal Markov LPPM is able to get close to optimal performance during
evaluation. We also observe that training with seven days of data (rich training)
is slightly better than training with a single day (scarce training). This slight
improvement suggests that a single day of training already encodes most of the
road restrictions. To validate this hypothesis, we also conducted experiments
where we train each user’s LPPM with past location traces of different users, and
the results were similar (c.f. [97]). This confirms that taking road constraints
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Figure 5.6: Experiment SP. Performance of SP-Exp and SP-LH against the optimal
sporadic attack in Brightkite and Gowalla datasets (with shuffled traces).
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into account is of paramount importance towards achieving high protection in
continuous non-sporadic location privacy.

Finally, MK-Exp performs better than MK-LH. These results support the find-
ings in [92], where authors showed that exponential mechanisms perform signifi-
cantly better than location hiding techniques when evaluated with metrics they
have not been optimized for. In our case, we see that MK-Exp performs better
than MK-LH when evaluated in testing data it has not been optimized for.

5.6. Blank-Slate Models

We have seen that hardwiring the training data into the mobility models used
for LPPM design can be detrimental to privacy. To alleviate this issue, we propose
blank-slate models for user mobility. These models treat their parameters (π in
the sporadic case; or π0 and M in the Markov case) as unknown variables that are
never completely known to the user when designing her LPPM. These parameters
can be initialized a-priori with training data, but do not remain fixed. Instead,
the user updates them a-posteriori, as she acquires additional information from
the observations (e.g., x and z, from the testing set). Therefore, we can expect
that LPPMs developed with blank-slate models will be desirable in situations
where the training data does not adequately capture the user’s mobility traits,
either because it does not contain sufficient information or because it captures
mobility patterns that are not characteristic of the user in question.

There are many ways in which a user can implement a blank-slate model.
For example, a user can train a distribution on the hidden parameter (e.g., p(π))
based on training data, and then estimate this parameter a-posteriori using x
and z (e.g., a maximum a-posteriori approach). In our case, we take a maximum
likelihood approach that we explain below. We present a new family of LPPMs,
the Profile Estimation-Based LPPMs (PEB-LPPMs), that we build by leveraging
a sporadic blank-slate model for user mobility. We do not tackle the problem of
LPPM design under blank-slate Markov mobility models, but we show that our
PEB-LPPM is also useful for users whose mobility model is Markovian.

5.6.1. LPPM Design in the Sporadic Blank-Slate Model

A sporadic blank-slate model is characterized by a mobility profile π that is
unknown to the user. In order to design an LPPM using this model, the user must
first estimate this mobility profile. We propose to use a Maximum Likelihood
Estimator (MLE) of the mobility profile before each query r, and then use this
profile to build an optimal sporadic LPPM. We call the LPPM designed this way
Profile Estimation Based (PEB)-LPPM.
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Figure 5.7: Experiment MK: Performance of MK-Exp and MK-LH, against the
optimal Markov attack in Brightkite and Gowalla datasets.
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Figure 5.8: Experiment MK: Performance of MK-Exp and MK-LH against the op-
timal Markov attack in Taxicab dataset.

More precisely, a PEB-LPPM is an output-based defense, i.e., characterized
by f(zr|zr−1, xr), that is computed by following these steps:

1. Compute an MLE of the mobility profile π using zr−1. Let this estimate be
π̂rML.

2. Normalize the estimate π̂rML to avoid variance issues for low r, producing
π̂r.

3. Compute the optimal LPPM in the sporadic mobility model using π̂r and
generate zr randomly using xr and this newly created LPPM.

This whole process can be embedded into a function of the form f(zr|zr−1, xr)
that defines the PEB-LPPM.

Note that, in the first step above, the user could have also used her past real
locations xr−1 to compute the MLE estimation of her mobility profile (since she
knows them). This, effectively, would result on a full-LPPM f(zr|zr−1,xr). As
we mentioned in Section 5.4, assessing the privacy of these LPPMs against an
optimal adversary is computationally intractable. Thus, to avoid gaps in our
evaluation, we only use zr−1 to compute our MLE of the mobility profile. We
delve into the steps of the PEB-LPPM design below.
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5.6.2. Step 1: Mobility Profile Estimation.

We derive the Maximum Likelihood Estimator (MLE) of the mobility profile
given zr. We use πi ≡ p(x = xi) to denote the probability mass function defined

by π. Let P be the set of all the possible mobility profiles, i.e., P .
= {π|∑|X |i=1 πi =

1, πi ≥ 0}. The MLE of π given zr is defined as

π̂rML = argmax
π∈P

p(zr|π) . (5.16)

An efficient iterative way of computing this estimator is the Expectation-
Maximization (EM) method [98]. Instead of maximizing p(zr|π), we rely on xr

as auxiliary data and define a Q function as

Q(π, πt) = E
{

log p(xr|π)|Z = zr,Π = πt
}
. (5.17)

The EM method iterates over two steps: first, compute Q(π, πt) (E-step), and
then find πt+1 as the profile π that maximizes Q(π, πt) (M-step). We expand Q
as

Q(π, πt) = E
{

log p(xr|π)|Zr = zr,Π = πt
}

=
r∑
s=1

E
{

log p(xs|π)|Zr = zr,Π = πt
}

=
r∑
s=1

|X |∑
i=1

log πi · p(xri |zr, πt)

=

|X |∑
i=1

log πi ·
[

r∑
s=1

p(xsi |zr, πt)
]
.

(5.18)

In order to find the π ∈ P that maximizes Q(π, πt), we build the Lagrange
multipliers function

L(π, λ,µ) = Q(π, πt) + λ

 |X |∑
i=1

πi − 1

+

|X |∑
i=1

µiπi , (5.19)

where the term with λ corresponds to the constraint
∑|X |

i=1 πi = 1 and the terms
with µi correspond to πi ≥ 0. We take µi = 0 for the non-negativity constraints,
and by solving ∂L/∂πi = 0 and ∂L/∂λ = 0 we obtain the maximum, which gives
us the update rule

πt+1
i =

1

r

r∑
s=1

p(xsi |zs, πt) =
1

r

r∑
s=1

πti · f(zs|zs−1, xsi )∑|X |
k=1 π

t
k · f(zs|zs−1, xsk)

. (5.20)
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Following [99], we can see that this solution is the global maximum of Q(π, πt),
since it meets the KKT (Karush-Kuhn-Tucker) conditions, Q(π, πt) is strictly
concave on π (it is a weighted sum of logarithms) and P is a convex set.

Summarizing, in order to compute the MLE of the mobility profile, one pro-
ceeds as follows. First, define an initial profile π0. Then, follow the update rule
given by (5.20) until convergence (i.e., until the change from πt to πt+1 is small
enough). This algorithm is ensured to converge to the MLE for memoryless and
output-based LPPMs, as we prove in Appendix 5.B.

5.6.3. Step 2: MLE Normalization

The accuracy of the MLE estimator above depends on the number of queries
done previously. For example, we can expect to have a worse estimation of π if we
compute it at time r = 2 using only z1, compared to computing it at time r = 100
with z99. To alleviate this issue, we perform a normalization step. Let πini be a
initial mobility profile (e.g., a uniform profile, a profile computed from auxiliary
data, or a profile computed from the training data as in hardwired models) and
γ > 0 be a constant. The final mobility profile after the normalization step is

π̂r =
1

rγ
· πini +

(
1− 1

rγ

)
· π̂rML . (5.21)

The coefficient γ tunes how fast the effect of πini in π̂r fades with r. For example,
if the user does not have enough data to compute a reliable initial profile πini,
she can simply set γ = 0.5 so that π̂r converges fast to the ML estimation π̂rML.
If the user believes that πini is representative of her current mobility behavior, a
slower rate γ = 0.1 is more appropriate.

5.6.4. Step 3: Final LPPM Computation

Once the user has computed her estimation of the mobility profile π̂r she
builds an optimal memoryless LPPM for the sporadic location privacy case (e.g.,
using the linear programming or the optimal remapping approach we explained
in Section 5.4.1). Using this LPPM, she samples the obfuscated location zr given
her real location xr.
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5.7. Evaluation of Profile Estimation-Based

LPPMs

Now, we evaluate the performance of the PEB-LPPMs that we developed
leveraging the blank-slate sporadic mobility model, and compare them with the
optimal LPPMs that we evaluated earlier. We use the notation PEB-LH and
PEB-Exp to denote the location hiding and exponential LPPMs computed fol-
lowing the PEB-LPPM strategy in Sect. 5.6. We heuristically chose to use
the parameter γ = 0.5 in our experiments, so that the PEB-LPPMs adapt
quickly to the MLE of the mobility profile. For example, this means that, af-
ter r = 100 queries, the mobility profile that is used for design π̂r in (5.21) will
be π̂r = 0.1 · πtrain + 0.9 · π̂rML.

As in Section 5.5, we split the evaluation into two parts, using the same
settings (see Table 5.3). Since PEB-LPPMs learn the user behavior as she queries
the LBS, we can expect that their performance will improve over time. Therefore,
instead of averaging Q(f, r) and PAE(f, h, r, r) over all values of r, we perform the
average over the first and last halves separately (e.g.,

∑150
r=1 · · · and

∑300
r=151 · · ·

in Brightkite/Gowalla).

5.7.1. Experiment SP with PEB-LPPMs

First, we evaluate PEB-LPPMs in the sporadic scenario. We compare the
performance of PEB-LH and PEB-Exp with SP-LH and SP-Exp, against the optimal
sporadic adversary. We use only the rich data to train SP-LH and SP-Exp and to
initialize PEB-LH and PEB-Exp (for simplicity). Figure 5.9 shows the results. The
blue line corresponds to the orange line in Fig. 5.6 (SP-LPPM trained with the rich
data). The orange line is the average performance of PEB-LPPMs in the first
150 samples, and the green line is the average performance in last 150 samples.
We can see that PEB-LPPMs always outperform hardwired ones (SP-LPPM) in
the sporadic scenario, and that the performance of PEB-LPPMs improves with r.
This is reasonable, as these mechanisms estimate the real user behavior adaptively
during the evaluation, and with higher r values this estimation is more accurate.
These results show that disregarding the training data and relying solely on the
MLE of the mobility profile (PEB-LH and PEB-Exp with r > 150) can yield LPPMs
that offer better protection than those hardwired on the training data (SP-LH and
SP-Exp).
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Figure 5.9: Experiment SP: Performance of PEB-LPPMs versus SP-LPPM, using
Brightkite and Gowalla datasets (shuffled). SP-LPPM have been trained with the
rich data.
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5.7.2. Experiment MK with PEB-LPPMs

Now, we compare PEB-LH and PEB-Exp with MK-LH and MK-Exp against the
optimal Markov adversary, in the settings of Experiment MK. Figure 5.10 shows
the results for Brightkite and Gowalla, and Fig. 5.11 for TaxiCab. In Brightkite
and Gowalla, we use only the rich training data to build MK-LPPM. Here, even
though PEB-LPPMs are built upon the sporadic blank-slate mobility model, they
are on-par with optimal Markov designs in non-sporadic location privacy settings,
and in many cases outperform them. This is because Brightkite and Gowalla
are datasets where user check-ins are not strongly correlated. This means that
capturing the road restrictions is not decisive towards achieving a good privacy
performance, and therefore PEB-LPPMs can compete with MK-LPPM.

The situation changes drastically in TaxiCab dataset (Fig. 5.11). In this case,
even though we have decided to train MK-LPPM using the scarce training set (one
day of data for each user), this is enough for MK-LPPM to achieve an outstanding
performance (as we saw in Fig. 5.8). This is because, in TaxiCab dataset, the
locations are tightly correlated due to road restrictions. PEB-LPPMs are built
leveraging a sporadic blank-slate model, so they cannot capture these restrictions,
and thus perform poorly in this dataset. Note that increasing r does not have a
significant effect in the performance, since it does not matter how accurately the
profile estimation of PEB-LPPMs is: a (sporadic) mobility profile cannot capture
the correlations of non-sporadic models.

5.7.3. Summary of Results and Other Privacy Metrics

PEB-LPPMs outperform optimal hardwired LPPMs in all of our sporadic
location privacy experiments. This is reasonable, as in these experiments the
training data cannot closely characterize the behavior of the testing set users.
This does not mean that PEB-LPPMs always outperform hardwired LPPMs in
sporadic location release scenarios: if user behavior can be accurately modeled
by the training data, the performance of hardwired LPPMs would be close to
optimal. However, we can confirm that PEB-LPPMs are a powerful tool to
protect users whose mobility behavior cannot be predicted from the training
data.

In non-sporadic location privacy, our experiments show that PEB-LPPMs can
outperform optimal Markov LPPMs when the user’s real locations are not highly
correlated (i.e., Brightkite and Gowalla datasets). When there are high depen-
dencies between the real locations (i.e., TaxiCab data with location reports every
5 minutes), PEB-LPPMs perform worse than optimal Markov designs because
they cannot capture these correlations. This could be addressed in future work
by developing PEB-LPPMs based on blank-slate Markov models. These PEB-
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Figure 5.10: Experiment MK: Performance of PEB-LPPMs versus MK-LPPM in
Brightkite and Gowalla datasets. MK-LPPM have been trained with the rich data.
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Figure 5.11: Experiment MK: Performance of PEB-LPPMs versus MK-LPPM in
TaxiCab dataset, with one day of training. MK-LPPM have been trained with the
scarce data (a single-day trace).

LPPMs would re-estimate the Markov transition matrix on-the-fly using released
locations and taking road restrictions into account.

On another note, in this chapter we only use the average adversary error
to measure privacy, and do not show the performance improvements of other
privacy metrics that we have seen in the previous chapter, i.e., the conditional
entropy and geo-indistinguishability. We do this for simplicity. Throughout our
evaluation in this chapter (Figs. 5.9-5.11) we have seen that, in many scenarios,
PEB-LPPMs outperform hardwired-based LPPMs. The underlying reason of this
improvement is that the mobility profile that PEB-LPPMs estimate a-posteriori
characterizes the actual user mobility better than the hardwired models. Thus,
we can expect that PEB-LPPMs will also outperform hardwired LPPMs in these
scenarios in terms of other privacy metrics, since they are more tailored to the
actual user behavior in the testing data (e.g., PEB-Exp will provide more geo-
indistinguishability or conditional entropy than SP-Exp for the same quality loss,
in a sporadic location release scenario).

5.8. Related Work

Early surveys of location privacy attacks, defenses and privacy metrics, by
Decker [39] and Krumm [40], do not include any discussion about modeling user
mobility.
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A first explicit modeling appears in [51], where Shokri et al. propose a frame-
work to evaluate location privacy mechanisms. In their framework instantiation,
they consider a Markov hardwired model for user mobility, and in their evalu-
ation they effectively merge training and testing sets. A number of follow-ups
also hardwire the mobility model using the evaluation data itself. In sporadic
location privacy, this methodology was used to design and evaluate LPPMs ac-
cording to different privacy notions. First, it was used to find optimal LPPMs in
terms of the average adversary error, either by reporting individual locations [46],
using dummy check-ins [90], or in combination with geo-ind guarantees [72]. Sec-
ond, hardwired user mobility models are used to obtain utility improvements and
derive optimal geo-indistinguishability LPPMs [65], or to evaluate a semantic
variation of this notion [66]. Non-sporadic location privacy works also hardwired
their mobility models on the evaluation data, and typically adopt a Markov model
for user mobility to account for temporal correlations [64,91].

Chatzikokolakis et al. are the first to explicitly separate data used to de-
sign LPPMs and to evaluate them [67], in the context of geo-indistinguishability.
However, they do not quantify the privacy gap between theoretical design and
empirical evaluation in a testing set.

To the best of our knowledge, our work is the first to evaluate previous optimal
LPPMs by considering a separation between training and testing data. We find
out that LPPMs perform worse than previously reported results [46,91–93] when
empirically evaluated in a testing set. We also propose a blank-slate model for
user mobility, which allows us to design LPPMs that learn the model parameters
during the evaluation. We are not aware of other blank-slate models in the
literature, although the mobility profile estimation carried by PEB-LPPMs is
similar to the problem of estimating a distribution from noisy data in privacy-
preserving data mining [98].

5.9. Conclusions

Previous strategies to design Location Privacy-Preserving Mechanisms
(LPPMs) assume that training data can completely characterize user mobility
behavior, and hardwire this information in the mechanism itself. We demon-
strate how this design decision overestimates the privacy offered by these designs
when the users’ mobility profile deviates from the training set characteristics.

We propose to use blank-slate models for user mobility that treat the mobility
profile as an unknown variable that has to be learned. We leverage a sporadic
blank-slate model to propose a new family of defense techniques, PEB-LPPMs,
that adapt to the user behavior using past obfuscated queries. We compare our
proposal to hardwired LPPMs, and show that PEB-LPPMs improve the privacy
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except in continuous location release scenarios where user locations are highly
correlated.

The problem identified in this chapter is not unique to the location privacy do-
main. More generally, to build privacy enhancing technologies that provide strong
privacy guarantees in real cases, we have to embrace that training information
cannot always fully capture real user behavior. We believe that blank-slate mod-
els, that incorporate the uncertainty about real user behavior, are a promising
approach to improve the protection provided by privacy mechanisms not only in
location privacy but in a broader type of privacy problems.



Appendix

5.A. Performance of Memoryless LPPMs in the

Hardwired Model.

Consider the full-type LPPM f(zr|zr−1,xr), and a memoryless-type LPPM
that we denote by f ∗, defined as

f ∗(zr|xr) .
=
∑
xr−1

∈X r−1

∑
zr−1

∈Zr−1

p(xr−1, zr−1|xr) · f(zr|zr−1,xr) . (5.22)

The average loss of f and f ∗ is the same, i.e., Q(f, r) = Q(f ∗, r) due to the lin-
earity of this metric. Then, by proving that f ∗ does not achieve less privacy than
f , we prove that the privacy and quality loss trade-off of f ∗ is not worse than that
of f . For these proofs, we use p∗ to denote the probabilities referred to the case
where the LPPM used is f ∗. Also, we use z−s

.
= [z1, z2, · · · , zs−1, zs+1, · · · , zr].

Our goal is to prove that minh PAE(f, h, r, s) ≤ minh PAE(f
∗, h, r, s), i.e., that

f ∗ does not achieve less privacy than f against an optimal adversary that mini-
mizes PAE:

min
h

PAE(f, h, r, s) =
∑
zr∈Zr

min
x̂s

[∑
xs∈X

π(xs)p(zr|xs)dP (xs, x̂s)

]
(a)

≤
∑
zs∈Z

min
x̂s

[ ∑
z−s∈Z−s

∑
xs∈X

π(xs)p(zr|xs)dP (xs, x̂s)

]

=
∑
zs∈Z

min
x̂s

[∑
xs∈X

π(xs)f ∗(zs|xs)dP (xs, x̂s)

]
(b)
=
∑
zr∈Zr

min
x̂s

[∑
xs∈X

π(xs)p(z−s)f ∗(zs|xs)dP (xs, x̂s)

]
= min

h
PAE(f

∗, r, s) .
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Step (a) comes from splitting the summation over zr into two summations: one
over zs and the other over the complement. Then, computing the summation
(over z−s) of the minima over x̂s is smaller or equal than computing the minimum
of the summation. Step (b) follows from the fact that z−s is independent of zs

and xs in the hardwired model and with a memoryless LPPM f ∗.

5.B. Convergence of the EM Sequence to the

MLE of the Mobility Profile.

We prove the convergence of the EM iteration in (5.20) to the maximum like-
lihood estimator of the mobility profile, for memoryless and output-based LPPMs
only. Let P be the probability simplex, i.e., the set of valid mobility profiles
P .

= {π|∑|X |i=1 πi = 0, πi ≥ 0}. Then, the MLE is

π̂rML = argmax
π∈P

log p(zr|π) . (5.23)

In [98,100], authors show that if the likelihood function (i.e., log p(zr|π)) has a
unique global maximum over P and the derivatives ∂Q(π, πt)/∂π are continuous
over π and πt, then any EM sequence {π0, π1, π2, · · · } computed as in (5.20)
converges to the unique global maximum π̂rML. We now prove that our problem
meets these requirements, and refer to [98, 100] for the complete details of the
proof.

First, we prove that log p(zr|π) is strictly concave and has a unique global
maximum over P . By definition, it is easy to see that P is convex, i.e., given two
profiles π, π′ ∈ P , we can check that π′′

.
= λπ + (1− λ)π′ ∈ P for λ ∈ [0, 1]. On

the other hand, we can write log p(zr|π) =
∑r

s=1 log p(zs|zs−1, π) and show that

p(zs|zs−1, π) =

|X |∑
i=1

f(zs|zs−1, xs = xi) · πi , (5.24)

where f(zs|zs−1, xs = xi) is given by the LPPM (it does not require π for its
computation, since it is an output-based LPPM). This means that p(zs|zs−1, π)
is linear with π, and therefore log p(zs|zs−1, π) is strictly concave. This implies
that log p(zr|π) is also strictly concave, since it is the sum of strictly concave
functions. Since P is a convex set, then log p(zr|π) has a unique global maximum
over P .

On the other hand, it is easy to see that the derivatives ∂Q(π, πt)/∂π are
continuous in π and πt (note that πi ∈ [0, 1]), which concludes the proof.

The proof for memoryless LPPMs is the same, since they are a sub-type of
output-based LPPMs.



Chapter 6

Conclusions and Future Work

In this thesis, we used signal processing tools to develop privacy enhancements
for electronic services. We studied two privacy-preserving technologies: mix-
based anonymous communication systems, that protect against meta-data leak-
age, and perturbation-based location privacy mechanisms, that protect against
an adversarial location-based service provider.

Our first contribution in mix-based anonymous communication systems is
a methodology to allocate dummy traffic so as to maximize the privacy that
the mix provides to its users (Chapter 2). We derived a closed-form expression
of the anonymity of the users in terms of the system parameters, and used it
to study how to optimally allocate dummies so as to achieve specific privacy
goals. We illustrated the usefulness of this methodology by deriving two optimal
dummy allocation strategies: one that increases the protection of all the users in
the system by a constant factor, and another one that maximizes the minimum
protection of all the pairwise relations between users in the system.

Then, we studied optimal message delay strategies in pool mixes under realis-
tic user behavior (Chapter 3). We first proposed a behavioral model that accounts
for realistic traits, such as the fact that some users spread the messages they send
among multiple recipients, while others keep long conversations with a particular
recipient before switching to another one. We validated this model with real data,
and used it to obtain an expression for the anonymity of the users against the
state-of-the-art profiling attack. Using this expression, we found the distribution
of the delay of the messages inside the pool mix that maximizes user privacy,
and proposed other sub-optimal but easier-to-compute distributions. Our exper-
iments with real data confirm that our proposed delay strategies outperform the
state-of-the-art design (i.e., the binomial pool mix).

In the field of location privacy, our work identifies flaws in the approach that
is typically followed to design and evaluate Location Privacy Preserving Mech-
anisms (LPPMs). First, we studied the metrics that are used to assess LPPM
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performance (Chapter 4). We show that judging LPPMs based on a single pri-
vacy and utility metric is misleading, and provide an example of an LPPM that is
optimal according to the state-of-the-art location privacy metrics, but is clearly
unsuitable for the users’ needs. We claim that we must consider privacy and util-
ity as multi-dimensional notions, and advocate for using the conditional entropy
as a complementary privacy metric. We develop a (quasi-)optimal LPPM that
maximizes the conditional entropy, and evaluate it together with previous pro-
posals in terms of different privacy and utility notions. Our experiments confirm
that no mechanism fares well in all the metrics, and that judging an LPPM based
on a single metric gives a false perception of privacy.

Finally, in Chapter 5 we studied how to design LPPMs that protect users
with unknown mobility behavior. We found that most of the previous works
build LPPMs using mobility models hardwired on the training data. We showed
that these LPPMs are overfitted to the training data, and thus perform below
the theoretical expectations of LPPM designers when evaluated on a different
testing data. In order to build LPPMs for users whose behavior is not represented
by the training data, we proposed a blank-slate mobility model. This model is
not determined by the training data, but adapts a-posteriori to the actual user
behavior as she queries the location-based service provider. We evaluated LPPMs
developed with blank-slate models, called PEB-LPPMs, and showed that they
improve over hardwired LPPMs when the training data does not capture well the
actual users’ behavior.

This thesis demonstrates the advantages of following a statistical approach
towards designing privacy-preserving systems. Contrary to heuristic or machine
learning approaches, our contributions [19, 34, 35, 37, 38, 76, 81, 92, 97] are backed
up not only by empirical results, but also by theoretical foundations that ensure
that our privacy improvements are effective as long as the user behavioral models
that we considered hold in practice.

6.1. Future Research Lines

Even though the two parts of the thesis deal with privacy problems that are
very different, the statistical models that we used in both parts are surprisingly
similar. Indeed, we can abstract both models in a single one, where there are N
users sending messages to M possible destinations through a privacy-preserving
channel (Fig. 6.1). An adversary observes the messages sent and received by both
parties and wants to either estimate the sending profile of the user (this is the
profiling adversary that we assumed in the first part of the thesis) or learn to which
destination an input message was headed (this corresponds to the adversary of the
second part of the thesis). The privacy-preserving channel can perform different
operations that increase the privacy of the user, at some cost: the channel can
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Figure 6.1: General system model of privacy-preserving communication channels
that accommodates a wide variety of privacy scenarios, such as the mix-based
anonymous communication system and the obfuscation-based location privacy
model that we studied in this thesis.

delay messages, at the expense of communication latency; obfuscate or change
the recipient of a message, at the expense of service utility; and add dummy
messages, at the expense of communication overhead or bandwidth.

Mixes provide anonymity by adding delay (and, possibly dummies), but do not
allow recipient obfuscation (changing the recipient of a message contradicts the
purpose of the communication, i.e., results in a total loss of service utility). User-
centric location privacy mechanisms, however, do not benefit from delay (since
they are implemented on the user’s device, and thus cannot blend messages from
several users together to confuse the adversary), but allow obfuscation of the
destination (i.e., the location) and also benefit from dummy messages (as shown
in other works [53,54,90]).

The general model in Fig. 6.1 accommodates these two privacy scenarios and
we believe it could fit many other problems. This opens many research oppor-
tunities, as the statistical techniques that we used in this thesis can be used to
develop solutions to other privacy problems that fit this general model.

6.1.1. Other Future Lines.

The contents of the chapters in this thesis are based on our research in chrono-
logical order. We believe that we could improve the contributions of our earlier
works using the lessons that we learned afterwards.
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First, in our study of optimal dummy allocation strategies (Chapter 2), we
assumed a simple user behavioral model (the traffic follows a Poisson distribution)
that does not hold in real scenarios. We refined this model to account for more
realistic user behaviors in our study of delay characteristics (Chapter 3). We
would like to take a look back at dummy allocation strategies under realistic user
behavior. This is specially challenging, since generating dummy traffic mimicking
real behavior is complicated (due to inherent correlations between real messages,
e.g., users reply to messages, only send messages when they are available, etc.).

In our work in mixes, we measure privacy as the mean squared estimation
error of the users’ sending profiles. Then, in our work on location privacy (Chap-
ter 4), we challenged the practice of using a single privacy metric to assess the
performance of privacy-preserving techniques. We would like to study how this
multi-dimensional privacy notion applies to mix-based anonymous communica-
tion systems.

Finally, in Chapters 3 to 4, we trained the users’ behavioral models on the
same data that we used for evaluation (this is common practice in the related
works as well). However, as we discussed in Chapter 5, this leads to designs
of privacy-preserving mechanisms that are overfitted to the training data and
perform much worse in practice. We would like to evaluate our improvements to
mix-based anonymous communication systems using different training and testing
data.

Other future research lines that we envision are:

The methodology of our work in mixes relies on the performance analysis of
LSDA, since it is the best-performing profiling attack that can be applied
to pool mixes. However, we know that LSDA is sub-optimal, so it would
be interesting to find the optimal profiling attack in mixes and test if our
findings still hold.

We used estimation theory tools in our analysis of mix-based anonymous
communication systems, and derived designs that protect against an adver-
sary that tries to estimate the users’ sending profiles. However, we could
also leverage decision theory techniques to study the protection of the users
against an adversary that wants to make a decision (e.g., an adversary that
wants to decide whether or not a particular sender is exchanging messages
with any receiver within a set).

In our work in location privacy, we found that LPPM performance varies
considerably between the users within the same dataset. A possible line
of future work would be to identify which user mobility traits affect this
variation in LPPM performance, in terms of both the average adversary
error privacy metric and the conditional entropy metric. This way, we could
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determine traits that make users specially vulnerable against the service
provider, and modify their LPPMs accordingly.

Our sporadic blank-slate models perform better than hardwired LPPMs
when the user’s locations are not highly correlated. However, when they
are (e.g., Markov models), sporadic blank-slate models cannot compete in
many cases against hardwired Markov-based LPPMs. The reason for this
is that hardwired Markov models account for the map mobility restrictions
(roads, turns, traffic lights) while the sporadic blank-slate models do not.
The next step in this research line would be to develop Markov blank-slate
models that account for these location correlations and also learn the user
behavior on-the-fly.
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dia Diaz. Optimizing the design parameters of threshold pool mixes for
anonymity and delay. Computer Networks, 67(0):180–200, July 2014.
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